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NASA TT F-9700

HYPERGEOMETRIC FUNCTIO._S _ND VARIOUS RELATED PROBLEMS

S. Pincherle
_s

J

The author presents a series of lessons dealing with the */209

theory of hypergeometric functions based on the principles

of analytic function theory. Then dealt with successively

are the principal properties of hypergeometric series, linear

difference equation and second order linear difference equa-

tion, linear differential equations and regular linear dif-

ferential equations and their application to the hypergeometric

_ equation.

Chapter VI contains the theory of a quite simple func-

tional transformation, and, as an application of this oper-
a ation, two distinct generalizations of hypergeometric func-

tions by Pochhanm_er and Goursat. In Chapter VII, by applying
k

some general propositions in linear differential equations,

particularly of the second order, the following results,

among others, are given: I. a method of calculating the value
of a continuous fraction the terms of which are rational func-

tions of the index and, as a special case, the well-known

Gauss formula for the expansion of the quotient of two conti- _

guous hypergeometric series in a continuous fraction; 2. the

development of an analytic function in ordinate series accord-
ing to the denominators or the remainders of the reductions

of a continuous algebraic fraction, especially in accordance

I with a system of hypergeometric functions, e.g.,
spherical

functions, with a method for determining the convergence te_ms.

The hypergeometric series, studied by Gauss as a synthesis o'"f elementary

trascendentals, has in turn been taken as a point of departure in the research

and formation of innumerable classes of new functions, The important part play-

_< ed by the Gauss series in the development of modern analytical methods is evi-

dent if one takes into consideration the fact that two of the most outstanding

theories which have enriched science in the last thirty years have resulted

from studies on this series: that of linear differential equations established

by Fuchs in a now classic memorandum, the elementary origins of which, howe-,er,

*/__N,_bers in the margin indicate pagination of the original foreign text. _.-'i
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are found in the celebrated work by Riemann on the hypergeometric series, and

that of automorphic f.m,ctions, which owes itg results to Poincar4 and Klein,

the method of which, however, appears to be contained in essence in the studies

by Schwarz on cases J_ which the hypergeometric differential equaLion admits of

an algebraic integral. Because of their historical interest and the number of

generalizations which, even in recent times, the various mathematicians have

given them in different directions, and due to the various useful digressions
v

_ which it offers, I was of the opinion that the theory of hypergeometric func-

tions woL,d be an admirable subject for a series of lessons for students ade-

_. quately grounded in the principles of analytical function theory.

•_ Therefore, I have presented a series of lessons on this subject in the R.

University of Bologna during the current school year. In gathering material

_ for this course I have noticed that various _heories, presented as separaue
=

generalizations of the hypergeometric functions, can instead arise from a sin-

gle source and that some treatments, with no apparent connection with each

other, presented at different times and wit" different methods, could be re-<

grouped under a single point of view, which is doubly advantageous in that /210

_reater simplicity and brevity of exposition and uniformity of method are

achieved. This observation has led me to believe that the publication of por-

i_ tions of this course would serve a useful purpose; I was moved to this end also
by the consideration that this publication would give me the opportunity to

present the applications of some results obtained by me in previous works in a

simplified form. Chapter VI of this memorandum therefore contains the theory

of a quite simple operation or transformation which I previously encountered;

: in the same chapter, as an application of this operation, are presented in a
J

very obvious manner two distinct generalizations of the hypergeometric functions

2
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which, originating from quite different views, lave been given by Pochhammer

and Goursat. Also, in Chapter VII, by applying some general propositions on

linear differential equations particularly of the second order, the following
_ '

results, among others, are given: i. a method of calculatin_ the value of a

continuous fraction the terms of which are rational functions of the index and,
_r

t as a special case, tile well-known Gauss formula for the expansion of the quo-

g
f tient of two contiguous hypergeometric series in a continuous fraction; 2. the

development of an analytic function in ordinate series according to the denomi-

nators or the remainders of the reductions of a continuous algebraic fraction,

especially in accordance with a system of hypergeometric functions, e.g.,

spherical functions with a method for determining the convergence conditions

(completely different from that followed by Thom_ in his memorandum of Vol. 66

of the Journal of Crelle) to which I should like to call the attention of the

_ .... reader because I believe that it can be found in a more simple and much more --

general manner.

In view of the fact that the journal in _nich I have proposed co publish

these few pages is directed to the young students in the Italian universities

._ by its illustrious and lamented founder and that the subject involved is of
particular interest to them, I felt that it was my duty to present the material

} in the most accessible form and to hold the necessary acquirements to a minimum.

_ Therefore, I feel it necessary to touch on some well-known facts: these are
}f

: found in the first chapter, in which the most obvious properties of the Gauss

series are simply summarized, in the third chapter, which contains the elements
$,

._ of the theory of linear differential equations_ and partly in the second chap-

"' ter, in which the theory of recurring (or periodic) linear (or difference)

equations particularly of the second order is dev_loped with a certain degree s

,,j,

i ,],

,it,•
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of amplitude. The usefulness of the latter theory is evident on each page of

the following chapters. It may seem superfluous to present a theory as well

known as that of linear differential equations. I decided to do so for a num-

ber of reasons: first, the continuous references made to it in the subsequent

work; second, the fact that this theory is less familiar to our students than

it should be due to the fact that we do not possess a textbook which presents

: it clearly _nd simply and that it is difficult for many students to read the

origin_l memorandums; finally, because the opportunity of adapting a most

genial method of the lamented Prof. Casorati to school use presents itself

here, a method which consists of adding to the exposition of the theory of /21___!1

linear differential equations, the concepts on linear difference equations and

which offers unparalleled simplicity and scientific as well as didactic in-

, terest.

It would be fortunate if my endeavor would induce others with greater

ability to compile a complete work on the generalization of the hypergeometric

functions which would contain the following data conveniently fused together in

the common point of view of the theory of substitution groups: the results ob-

tained by Schwarz* in seeking algebraic solutions for the hypergeometric dif-

ferential equation, by Heun** by increasing the number of its singular points,

by Papperitz***, who made a contribution to the study of the uniform, automorp-

hic functions, which originate from the equation itself, by Klein****, who so

=

*Crelle, Vol. 65, p. 292.

**Math. Annalen, Vol. 33, p. 161.

***Math. A_qnalen,Vol. 34, p. 247.

****Math. Annalen, Vol. 37, p. 573.

4
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splendidly discovered the roots of the hypergeometric series, and by many

others*, not to mention the extension of the hypergeometric functions to the

case of many variables, already successfully attempted by Picard**, by Appe!i***

and by Horn****, and which by itself would offer sufficient material for a

separate monograph.

CHAPTER I

SUI_ARY OF THE PRINCIPAL PROPERTIES OF THE HYPERGEO_TRIC SERIES

i. From the term of progression or _eometrJc series given to the expan-

sion:

1 +x + x2 + .... * xn + ....

comes the term hyper_eometric series given by Ecler to the series:

_.3 ' _' _ _' 1" " '- "... . - - '._ ".-_ ..._ _- -

Iq-r'-_lZ + -i,i_-f.-_.o----_'_-...+ Ztr_l).,.(Z_-l_--I)•1.2 3...rt

Gauss, in a now classic work v, has made a thorough study of this series in- /212

sofar as was possible with the analytical knowledge of his time; ne designated

the series (i) with the symbol

r(_, _,y,x)

•As the present memorandum was in the final stages of composition, I

learned that the most distinguished Prof. Klein has presented a course on hy-

pergeometric functions, now published in lithographic form, during the past

winter semester. As yet, I have not been able to secure information on that

course, but surely the "desideratum" hare formulated will be well rewarded.

•*Annales de l'Ecole Normale Sup_rieure, 1881

•**J. Math., S. III, Vol. 8, p. 173.

•***Acta Mathematica, Vol. 15, p. 113.

VWerke, Vol. III, p. 123.
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calling _, B, and y parameters and x the argument: notations and denominations

which have been retained by his successors.

The series (i) contains as special cases many of the series which are pre-

sented in the elements of calculus. We shall point out the following:

(,,fl (a)F(--m,_, _,-x)=_ _/ =(1 +_)m
0

L

_ i.e., the binominal series;

F(I , ! ,_,_m)= (_l)n ....... =-I bg'(I-kx) (b)_, o n+ _ _ '

• from which, the logarithmic serles; etc.
r2

We should also note, more for its historical interest than for its

_° scientific significance, thatA

( b-) " ..t . .__ n
F 1 f;. I "_ _(_+ I) (p4-n-I) x

o

yields at the limit for P = _, the function ex, as shown by a very obvious

reasoning which is performed by dividing the summation into two parts, the first

_ of which contains a number of terms independent of p. In a similar way it is

il_!i also found that

( ,F P,O', Z, _c_

is reduced when p = _, p' = =, to the series expansion of cos x. However, we

shall not coL_sider infinite values of the parameters in the following.

2. If a ratio is established in the series (i) between a term and the

preceding one, it is immediately evident that the limit of this ratio for /213

|

i,t °' I
: I
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n = _ is x: therefore, it can be concluded that the series is absolutely con-

vergent for Ixl < i, and divergent for Ixl > i. In the plane of the complex

variable x the series (i) then has a circle of convergence with the center at

x = 0 and with the radius equal to unity: this series then has a regular

znalytical function at every point within this circle and thus possesses all

the properties, from the principles of the theory to those of tbe analytical

functions, which can be expected with these functions in the intervals in which

they remain regular.

: For Ixl = i, the crlterion used permits of doubt with respect to the con-

vergence or divergePce of the series. It is therefore readily demonstrable

that the series converges absolutely also for Ixl = 1 when the real part of

_ + B - y is negative. Indeed, by putting

a= _'+i_" _ =_'+ i_'' _', • , y = _ + r:"

we obtain easily that

(a + _) (_ + _) / a' + _' - X'- 1
,(X+_)(,_ �°$L+ superior powers of !.n

Keeping in mind that the series of positive terms _a is convergent if
n

]ira 7/(| - f_n ) > ! _

it can be concluded that when a' + B' - Y' is negative, the series

' x+ 1) +

is convergent absolutely for Ixl -- i.

The hypergeometric series is _educed to a polynomial if.. and only if, one

of the a, B numbers is a negative integer. :/!

7

Y
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3. If _ is a complex number, p a positive number, and I_[ _ p, we have

la(_4-i)...(=+a- l)I_<_(p+ I)...@ + u- I),

therefore, for the x values located on the circumference of center x = 0 and of

radiu_ _ < 1 and for c_ values within a circle of center a = 0 and of radius p,

we have

'_ IF(:_,g, _, x)1_<iV(,_,_, -_,_t.

_j. If M is now the upper limit of the second member values, for a known theorem /214

_> on the power series, we have

" 1 ....." _('f+1)..-(y+n- t t.2.3...t_ " _-_'

and this is sufficient reason to staV.ethau, for the given values of a :'?.!_' <

_ _, the series F(_, 6, Y, _') is equai!y convergent. A fundamental tha,..:,,of

Weierstrass on the series of rational __ions* no_ perrait.s us to con,.l_. , _

that the sa2d series is a uniform analyti,__alfunction of a, regular f,.T ;i

finite _ values, i.e., that this series i: a irtte rg._l trascendenta! r' ,. ion of
3,

,- c_. The same is true in cases of F considered as o function ot ,

_ Now let us consider F as a function of ¥. if ,(- _' o_i_v ,_.,atiTl trua

_: and we assume that 5'' + m > O, m being a positive integral nu,:_be', we shall

! have

:,_/ I"__ m I_>"_'+ m,

i therefore I ' I< ,

• o

•Monatsberichte der Akad. der Wissensch. zu Berlin, August, 1880.
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Thus the series F can be written

l"=] ; _'iq a(aq I} (rJ+tll--I) : I
.T t ,2; T • • _........ .... _'_

where, given IxI = g and y"' being a positive number less than y' + m, FI is

such that :

IF,1<l+ ;"'(re+l-T- ' ........ "f"iy'"_5-)l;/i-L_,,;,+_ + """

If M is the value of this convergent series, we have [FI] < M, and therefore
_5

for all y values so that y' + m > O, F 1 is equally convergent and represents

_" therefore an analytical, univocal and regular function of ¥. The part that

precedes the term in F1 is a rational function of y, with p_les of the first

} order in the points y = O, -i, -2, ... -m + i. _(henee, F, considered as a
F

:; function of y, is a fractional trascendental function having a oole of the

_ ..... first order in each point O, -1, -2 -m, _.Ld, consequently, one singu-

lar point essential to infinit_.

i From what is demonstrated in this paragraph, accordipg to the well known/215

principles of the thecry of analytical fuactions it follows that the series F

ii can be di_cerentiated -tTn by term with respect to the parameters a, B, , .d y.
(

4. It is easy to find the various functional properties possessed by the

_ series F due to the special form of its coefficients.

ii (a) By deriving (i) with respect to x, and by denoting the derivation with

: respect to this variable by means of accents, we have

'q. F'=_F(_+ I , fl+1 , _+! ,_). (2)

"i (b) we have also

I
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z

-: zF'=_ x-!- T(T+I)" z:4-....'i
L

in which the terms enc!._sedby parentheses are

�F(_+I, /,-f, x)-F(_, _ ,7 , x).

By pointing out the only parameter with which the value can be _odified,

F is expressed by means of the difference F(a + l)-F(u), and in the same manner

for the other parameters with the expressions :

k /

xF=-- F(T+I)-F(_).
_-= "t

By indicating the finite difference F(_ + I)-F(a) with AF and the nth --

difference with An F

F(_+ n)- . F(=+ . - ,)+ (_) F(= �,_-2)
+ (-i)"F(_),

i from the first equation in (3), by deriving again with respect to x _.ndmulti-

plying by x we obtain:

and in general /216

_:" Vc"; : _(_ + I) " (_ + ,_ ,- l).l"l: (4)

a formula which is easily demonstrated by showing that, supposedly true for the

superscript n, it is also valid for the subscript n + i.

(c) Given the linear differential equation of the second order

i0
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(5)
(x" - x) :,"(:,') = _ -.-,, 4- 1:.r - -;')_ ....:)-- :,,.;:.(.s.')= 0,

if _n attempt is made to integrate it in a series by the method of indetermi-

nate ceefficients, placing orx) = _Z_ixn, we readily find that

- k,,..._._,__(n + ,))O__ ,_)
/_. O, + ,') (n -'- 1)

5

Y

and, therefore, with the arbitrary coefficient k o being equal to unity, the

._ series _(x) coincides with F(a, E, y, x). Substituting in this identity

the values given by (4) for xF' and x2F ':, the following equation is" obtained¥

I with a simple reduction

i (_-:- i) x- 1).%-_F + ((_ �t_+1}m-7)lF -:-/a'F = 0 ; (6)

so that the hypergeometric series satisfies a differential linear equation of

I the second order with respect to the argumen_ and a linear equation by the dif-

i ferences with respect to each of the parameters.

t (d) Eq. (6) con be given another form by substituting its value F(a + 1)-

t
F(a) for the difference AF and so on for the second difference. Thus, the

• _ linear equation is obtained

(_t+ I)(a:- !) FOx+ 2) - t (a - _.+ )) ._- _ (_ + I) + 7)F_,_+ I) - (_ - -_+ !) F(_) = O,

and substituting a + u for a, and replacing F(a + n) with Fn for brevity, the

linear equation, which can be said to be recurring of the second order is .)b-

tained.

(_-_n + I)"z-I)F,,+2-L. (_-_:N_-t.l)&'-i'(_t+n+ I)+./)F,,+,--(a+.u-,(+ I)F,,=O. (7) _

1966004770-012



By means of this relation one can successively express F2, F3, ... by

mear.s of F and F 1 by using an equation of the form /217

2
_ w

Y,, ::- P,, F ._-Q,, I:"I ,

Pn and Qn being rational functions of x and of a. Analogous relations are valid

for the other parameters, B and y. We shall state the express case for equa-

tion (7) by saying that the Fn values are a recurring system of functions which

.£

is linear and of the second order.

(e) Gauss has called contiguous (functiones contiguae) two functions F in

which two of the parameters have the same value and the values of the third

parameter differ by one unit. Given F(_, S, Y, x), the system then bas 6 con-

tiguous functions and two of these and the primitive F can be associated in 15

7-

_ differen£ ways. Among these 15 terms there exist some homogeneous linear rela-

tions having coefficients of the first degree in x, three out of them arise

from paragraph (d) of the present section and the others are readily obtained

by the formula (3).

5. It is _nown that, according to Legendre, the definite integral is

called a Eulerian inteRral of the first s_ecies and is d_noted by B(p, q)

where p and q are either positive n_nnbers or complex numbers whose real part is

positive; it is also known that if we have the recurring relatiou with respoct

to p:

= P nCp)

then

12

q
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;_(!'J I)... O, + ,1- ,l) __(_,, ,#.r,(1)+., _i)= 7,, _,,;'<_,-_,i-T_.X -<r7_ -, ,_- _j

From this can be deduced

[,0,_+._,(t ,B(5- I) '_-_ ]
... ,¢. n--l) "i-- "l_._T-_'-I "'t_,--- .......

T ('*"i" 1) (T _- n I) 01t,--I(1 - t: , r-- d.,

where the real parts of _ and y-5 are assumed to be positive.

Under such circumstances, le_ us consider the following binomial series:

_ _+1)... (,_+_-1)
= it_X 'a ;

this development is convergent at the same degree if u is real and its value /218

lies between 0 and 1, including the extremes, while Ix! < !. Then it is possi-

ble to multiply by u_-i(1-u)Y-8-1du and integrate between 0 and 1. Thus, by

retaining the relation just established, we obtain:

therefore

v(_, ,_, _, _)= ii_,77_=-_)/o'_-'_ - "_)-_0- _,):-_-'_t_,

' i.e., by separating the external factor, t.h_ hypergeometric series can be put

in the form of a definite integral containirg the variable x under the sign.

Having reviewed the main properties of the classic hypergeometric series,

the individual theories focuned on each of these prop_.rt_es will be studied in

subsequent chapters and we shall begin with the theory of recurring linear equa-

tions to which equations (6) aud _",]) refer.

13 •

;iI
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CHAPTER II

LINEAR DIFFERENCE EQUATIONS

6. In this Chapter we shall consider recurrin_ linear equations, i.e.,

relations in which the values of a function _(n) of n appear linearly, for dif-

ferent values n + 1, n + 2, ... of the variable. The relation will be said to

be of the order of r if _(n), _(n + 1) .... _(n + r) enter into it.

This relation would then take the following form

12

f(n + r) + a,.. f(a + r - l) + a2.. f(a + r - _) + ... + o,.. f(n_ = b., (1)

_ and it will be called homogeneous or not depending on whether the bn value in

I"°

• _ it is respectively zero or different from zero.

!_ If _ is the known symbol of the finite difference

:, af= f(u + 1)- l (70,

by the known formula* /219

f(a-l-/O = fO0 + hA fOl) + h(h--l) _l[ + , ,_ 1.2 "'" +_hf' (h=l 2 ..r)

equation (!) can be transformed into

",: A'f+a',.,,A'-_f+ ' _-_ ' . _' f=b,,a_.,,A f_ • • (-r-,,
2

_._ for this reason equation (I) is also adaptable for a linear difference equation

._ of the order of r.

In the present theory, and as long as no other variable besides n plays a

part, by constant is understood any quantity which does not change when n varies

_ by integer_: in particular, any periodic function of n with a period equal to
J

unity.

_V. p. e. Ces&ro, Analisi algebrica (Algebraic analyses), p. 461.

_ 14
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_ 7. Theorem. "A necessary and sufficient condition so that, among the r

%

functions of n fl.f2...fr, an identical, homogeneous, ±inear, relation withi:
_" constant coefficients can exist, is that the following determinant be zero*".

5

I',(u_-l) /_,Ol+l) . .. !;.(n-" 1)
D= "

_ ° . ° , ° . ° ° ° ° • o

• _ [l(.+r--I) _In-_4'-'l)... £!.+r-I)

i (a) The condition is necessary. If indeed, Cl, c2 .... cr are constant, we

have

I c, f, O0 + c_f..O0 + • • • + r, f_('O= o,

- by writing those relations which are deduced by chan_ing n into n + i, n + 2,...

n + r - i together with this relation, we obtain homogeneous linear equations

..... between el, c2,...Cr, which require that D = 0 in order to coexist.

I (b) The condition is sufficient. This is true for two functions. In /220

_ fact, if
f

[ f,,,_ -r I) _,(t_ + I)

ii then
i[ f'("+ l)t,; 7i_-75=-l',i_ '
!

i.e., _2(n):j[l(n) is a constant in the established sense; if it is placed equal

: to cl:c 2, we have

; *Casorati, Interpreted Calculation of the Finite Differences, etc., Sec.
7. _nali di Matematica, S. Ill, Vol. 1C.

J
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Let us assume now that the proposition is true for r-i functions. I claim that

it is also true for r. Indeed, a very simple identical transformation allows

the putting of the determinant D into the form:

l),

i) = _I_i_i):._,i_:_)

where D 1 is the determinant

" I

_: ]f_(_._-l)r,(a+e:- f_(n+ 1)f2(a+ "_) ... f,(n* l)f,(n +¢)- f,(.+])f.(,_+ _)

I • . ° ° • .

_i i_(n+r-2)f:O,.+r-1)-fm(n+r-2f_.(:L+r-i ) . .. f,(a+r-2)f,(n*r-lJ-f,(n+r-2)f_(a+r-1) '

?

Now here _l(n) is assumed to be not infinite: therefore DI should be identi-

cally zero. However, it is a determinant of the same fo_a as D, relative to

Z the r-i functions
>,

_ f,(n) f,(!t+]) - f,(n) r.,Ol+l) .... fr(n) f,(n4 1)- f,(n) f_(n+l),

t and therefore an identical, homogeneouu linear relation will exist among these:

i

i c',(f,(n)f,(n+l)-l,(,l)f,(,,+l)) + ... + c',_,(fr(n)f,(n-i-l)-f,(n)f,(n+I)) = 0
wherefore /221

I f,(n) c',/_O0 + ... + c',_,f,(_) I, =0;
If,(n + i) c',f=O_ + i)+ ... + c'r_t#]-Ol + I)

but this being a determinant D relative to the functions

?dn) c,'Ol)f,(n) -,- + ¢'. ,f, (n_' + " ' ' .- r #l

±t follows that an identical homogeneous l_near relat$on with constant coeffl-

16
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r

• cients, will exist among these and namely, among the /l(n), f2(n),.., /r(n),

_ q.e.d.
r

"/ 8. Given an equation of the form (i), each one of its solutions is said

to be its integral. Considering from now on the homogeneous equation of order

r:
2

f fOl + r) + a_._ f(_ + r - I) + . . . + ffr',_ f(n) = 0 ,
(2)

4.

in which we shell concede that, at least from an n value on, ar. n is not zero,

it is evident that if _(n) is one of its integrals, C _(n) is also, C being a

: constant. If _l(n), ¢2(n) are two integrals of (2), Cl*j(n) + C2_2(n) will

:_ also be an integral, Cl, c2, also being constants.

Theorem. "Every equation of the form (2) has r linearly independent in-

tegrals, i.e. among which no homogeneous linear relation with constant coef-

ficients exists; every other integral of the some equation is associated with ....

the preceding r values by a homogeneous linear relation with constant coeffic-

ients".
i

Let z be a special value of n*: if arbitrary values are given to _(z),

_(z + I),... _(z + r - I), Equation (2) allows us to obtain _(z + r), _(z + r +

_ 1),..., and with that we shall have an integral of (2). Similar r integrals

_'. can be determined among which no homogeneous linear relation with constant no-

_ efficients will exist if the arbitrary values

&(z) _(_ ...£(:)

< L(:+I) 6(z+l) ...g(z+ 1)

.,,.....,,Q°.

_, _(= +r- I) _(: +,'-11... _(: -!-,'-'I I

*In our theory here the z value con be assumed w_.hout restriction to be

an integer and also to be null.

17 ,,_@,
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are chosen in such a way that their determinant is non-zero (Sec. 7). Once /222

determined, the line. rly independent r integrals _l(n), _2(n),... _r(n),

C,A(n)4 ('.,//')_ i-(:._(n)

will also obviously be an integral of (2). Moreover, every other integral ¢(n)

will be linearly bound to those r integrals because by writing eq. (2) for the

integrals _l(n),..., fr(n), _(n) and by eliminating a, al.n, ar.n among the

= equations thus written, we obtain

_ f,(n)f,(,_-:'1).. f'('+_')i

'_ fi(n) f_(n+ I) ... f,(n + 7'1 ,I

_;. ........... [=(I,

( f,-('Of,m * I) . .. f,.(,.+ r) !

• _(_) _(,+1) ...._(_+r)

with the effective result that an identical, homogeneous linear relation exists

.,.-_: among ¢(n), _l(n),... fr(n) (q.e.d.)
/

A system of linearly independent r integrals is called a fundamental s_y_s-

_" tom of integrals of Eq. (2). Each integral can be expressed in a homogeneous

linear function of r, the others constituting a fundamental system.
If fl(n), _2(n),..., _r(n) constitute a fundamental system, the same kind

i_ of system will also be constituted by
rh.,/',(n)+ rl,.,,l_(,O+ • • • _ ('_,.,I;('), (I,= I , 9 .... r) (3)

-_ Ch. k being arbitrary constants, provided their determinant is different than

.._. zero. It can be said that (3) effects the substitution (Ch. k) on the primitive

_ fundamental system.

_7 9. By setting the special value z of n equal to zero, it is often conven-

_ lent _o consider the fundamental system _l(n) _2(n) ... _r(n) such that

I 18
¢
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_" 5(0)= I , 5(1)=0 , f,,2) _,.... fdr-l)=O,

}::: f,o) =o , f.(])_:_ , f..,_)-,o . t:_,(,- b _o
_t
{ ° , . . ........ . , . . , ,

: 4(0,=o , _',@,.,2=-0 , fr(2)= U.... It(r-- ])=1.

!

il _ • IISu,'h a system will be called pr_nczpal Every other integral _(n) /223

can be obviously placed in the form

_'lt) = _/0) f,',t) '- _(1) f_(n) + ... + T(r- 1)/r(n).

The determinant D formed with the principal system has one outstanding property.

_i We set

f,(n) f_(.) ... g(n)

I f,O_-" 1) f_'n + 1) ... f,(,t + 1)
DOt)=

• ° . . . . , . ° • . • . •

f,(n+7.-l) &(n+7"-l)...f,(n+r- i)

by multiplying respectively by ar_l.n, ar_2.n,..., al.n the second, third,...

I and last line and summzng with the first multiplied by ar.n, we obtain, because

, of Eq. (2),

D(n + b = (- I¢ %. 11(.),

I then if ar.n is not zero from n = 0 on, and noting that D(O) = l, we
have

'_ D(n) = (- '1)'*r ,r,.o a_., . . • at.,_,. (&) :

_ i0. It is known from the elements of the theory of the power series of

one variable that these series can give rise to three cases: they are conver-°

gent for each finite value of the variable, or for all values of the variable

the modulus of which is less than a determined positive number or they are not

1
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convergent for any value of the variable which differs from zero. Now we pro-

pose to show that if a succession of numbers kn is defined for a rec:_rrlng equa-

tion of the form (2), the coefficients ai.n, a2.n,.., ar. n of which have, for

each value of n, a modulus smaller than a positive number M, the power series

Eknzn definitely does not belong to the third case, i.e., it admits a circle

of convergence of finite or infinite radius, but not zero. Indeed, let it be

l_a+t "- (lt'n kn+r-I + t'tz'n kn-_r-2 + " " " "J"er',_ _,L"

If the value of ko, kl,..., kr_ I are arbitrarily chosen, two positive nuE_ers

; A and R can always be assigned such that

_ I_ol< A , {_,F< A_: , I/h1< AIt_,..., _,-,f < ._-R:c'-_I;

moreover being able to _hoose R larger than M and larger than the only posi- /224

tive root of the equation

,_?___t .X_.t-2__._r-__ . ..--,_-__I= 0.

],

Then we have

Tl:rl< A,_I(l + R_ + R_ + . .. + ]U-r-') < A_IR _-, < AR_-_

then

11,',+,1< A_I (R-_+ R_ +... + R_-_)< A3IR _-''' ._AT2-_: ,

and thus, in general, Iknl < AR 2a. The series rknzn then converges at least

within the circle of radius I/R 2, q.e.d.

ii. The preceding proposition ca_1 be generalized. If the succession of
o

numbers kn _s definite for an inhomogeneous recurring equation

_ /¢n-_r= ttl't= /_,t+r-I + a_..n1¢,1+r-2 _-• • ' + ar'a /g,=q" bn ,

where the coefficients al. n, a2.n,.$ .. ar. n have their modulus less than a posi-

._, 20 ,
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rive M number for each n value, and the series Ebnzn admits a circle of conver-

gence with a radius not equal to zero, in such a way that two positive numbers

of B and P can be assigned so that

i_,,]<b_",

I claim chat in this case also the power series Eknzn has a radius of conver-

gence which is definitely not zero. The values of kO, kl... , kr_1 are again

arbitrarily chosen, then two positive numbers of A and R are determined so that

that
, , , . . . ' ' Ai3,'-Utkol<A, [k,1 - AII_ i_21<AR*, ,J_-C<

' also taking MA > B, R2 > 0, finally R larger than M and larger than the only

positive root of the equation

_2_-!__:,-__ _r-_._,,.___2=O,

; Then we h,ve

lkrI<A3i(l +I_ 2+ IP+..,+R _-2)+B<A31(2+R _+R'+ .,+I_ _-_)

and because of the hypotheses made on R: /225

j,",[ < A,_IIt_-_-'< Al{=q

Analogously, we have

then

_, kr+t < A3II3'+' < AIU."_,,);

: and in the same way it is shown that for each integer value of n, we have Ikn

< AR2n: consequently the series II_z n converges at least w'ithin the ci,'cle of

center z = 0 and of radius 1/R 2, q.e.d.
*j

12. When r functions of the integer n are given, linearly independent of

21 , _
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_: each other. _l(n) _2(n),.• :- , .., _r(n), it is always possible to construct the

difference equation of the f_rm (2), for which the given functions constitute

a fundamental system. Indeed, every other integral F(n) of that equation will

be associated by a homogeneous linear relation w_th constant coefficients with

_: _I (n)' _2 (n)'''" _r; it follows then that (Set. 7) will be

L

, F(.) 6C_') h(") • _(,) I

f J= F(.+I) 6("+I) _(Tt+t) ... _(n_l)

1 j=0,.o ..... ......°°.

] 'F(, + O _(. + r) A(., 7-)... 6(n + 1") I

and this is the required equation.
_ 13. Again indicating a fundamental system of integrals of Eq. (2) by _l(n),

_2(n),... _r(n), every other one of its integrals can be put in the form

_ c,_(.)+ r,&(,,)+ + e.4(").....

I Now, as will be evident from the following, it is very important for the case

in which the equation has an integral with the property that its ratio to each

other integral of the same eauation tends to zero when n = _. 'lhe integral

having this property, if it exists, will be unique* by its own definition:

this integral will be the so-called distinct inteKral** and when Eq. (2) has/226

such an integral, it is said that it defines a convergent algorithm.

When the ratios _i : _r, _2 : _r .... , _r-i : {r have been determined as

well as the finite limits for n = =, the quest for the distinct integral of Eq.

(2) can be reduced to a similar search for an equation of the same form, but of

' *Two integrals in one equation of the type (2) are not considered differ-
ent if their ratio is a constent.

•*On the generation of recurrent systems, etc. Acta Mathematica, Vol. 16,

p. 341.
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an order which is smaller by one unit.

If we set indeed

f,(.)
li,,l_')i_i= "_'

and consider the functions of n

f,Cn)-_,f/'0, fin)-,_f,(s0....,/._,(,0-_._,t_.0;

in the light of what was said in Sec. 12, we can construe: th,: difference eq,/a-

tion of the order r-l, of which these r-i functions, cle" rl-.-without a linear

relation, conEcitute a fundamental system, Now if th_ equation admits of the

distinct integral, it is clear that this would be tFe distinct integral also

fuL the primitive equation and vice versa.

14. Let us give special consideration to th homogeneous equaLion of the

form (2) in which the coefficients are constants, namely ....

&:,+ n, /,._r,+.. •--o f,,=O. (5)

If ai is a root of the algebraic equation

=r+a,z,-,+n2z,--.+... +a,=0, (6)

it is obvious that ain will be the integral of (5): if, therefore, all the

roots of (6) are distinct, the general integral of (5) will have the form

f,, -- Ct _1n + C2a2n .{... , + Cr "z,n.

If there is an a r among these roots, the modulus of which is less than that of

any other, ern gives us the distinct integcal.

When (6) does not have all distinct roots, but h of them are equa] to a,

it is readily evident that the integral containing h arbitrary constants, /22_____7

corresponding to these h roots, is given by
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a"(r_4,c't_t+%_ ? + ... + Ch,th-').(')

If the roots of (6) are distinct, a linear relation with constant coefficients

< cannot exist among the _in, _2n,... _rn

CI_,'_+C_."+.. Cr%" =0-

By forming the determinant D for the eln , a2n,... , _rn, the well-known Vander-

monde determinant, different than zero, is obtained. If one of the roots of e1
k

is multiple of the order of h, a similar relation cannot exist among aln, n_l n,

•--, nh-laln ' _hn,... _ n either, because here also in forming the determinant
r

D, the theory of determinants readily* demonstrates that its value is different

than zero. To furnish an example upon which an easy demonstration can be given

in the general case, let aI be a double root and the others, _3' e4"'" _n' be

simple roots. The determinant D is then

? ! t I i _ 0 I ...1
&

I aj _ro 9 $

_t 2 (l_2)_12 _3z ...ar_ = _! 2 2_ a3= ..._r z

._ .... ,.....°. °...-°.-"

_ _,_-'(_+_'-l)_,'-'_'-' ..._/-' _,_-'(r-l)_,'-_ _/-''"_/"

ii Now on considering the system of r equations with respect to the run- /228

- knowns _i' _3"'" er' this system is determined and therefore its determinant,

which coincides with D, is different than zero, q.e.d.

i *Casorati, loc. tit., Sec. 6. The method of decomposition of (5) is used

there in symbolic linear factors, quite obvious i_ the case of constant coeffic-

ients. However, this method can also be applied to equations with variable

_ coefficients as I have demonstrated in the two memorandums "O_, the Difference
-,_ Equations" R. C. of the Reale Accademia del Lincei, January 7 and February 4,

18£4.

£
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at r -{-(l! _i r-I -- . . . + (Ir -: 0

_ rq_r-_ ,_ (r--1) a Iqr-2 + . . . + er_l=O

_ar '- (t_ _.3r-l + . . . _ 0r = 0

¢ , ° ..... . ° • • . • °

_r r 4,, (I t 7r r-| *_- . . . -_ (I r --- 0

:£

&

_ CHAPTER III

SECOND ORDER LINEAR DIFFERENCE EQUATIONS

_ 15. In this chapter we shall apply the facts pertaining to equations of

I the second order, which we are going to study more thoroughly. We shall write
the recurring equation in the form

..... and we shall suppose that bp is not null from an n on, and for example precisely ....

from n = O. Let us denote the principal system of integrals of this equation

by An, i.e. that system for which the initial values are

Bn,

J._=l . ._,=') , B.)=0 , D,=I;

every other one of its integrals can be written (Sea. 9)

&= foA_ + f, Bn. (2)

The property found for the determinant D(n) by Sec. 9 yields, for tilecase of

the equation of the second order:

D(n) =. ' =._-,,1,,,., - B,,An+, (- l)" bo b, ... bn_: ,

then

A,, A,,. 1)" b°b' ... b,, ,
.B,, B,,_.,= (-" Bn B,,.,

and from this

-" 25 '_ :'
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r--I

A,, A.+r=(__).bobt. b. _ "_-_ 5,,t, n _...b.,,j , (3)........ .:, (-- 1)'J _ -_........ ..-.
-: ]l,, If.+ r wo I;.+._ B,,+.+ I

It is now easy to show that:

"The necessary and sufficient condition for the existence of the distinct
?

integral of (i) is that the ratio An:B n has a limit for n = ¢_."

If % is this limit, it is immediately evident that the ratio of An - XBn

_ to every other integral hAn + kBn of the equation tends to zero when n = _, and

vice versa, if the distinct integral on exists this can be expressed in a

;#

_ function of An and Bn in accordance with (2)

a_=_0A_+_iBa ,

, _ then, dividing by Bn and passing to the limit for n = _,
J

'_ _im_ = lira _oB__ = _ - - _" _
_ -- ' _t 0 whence li_n Aa _,

_ However, the condition of the existence of the limit for An/B n is that _n/Bn -

: An+r/Bn+r tends to zero for n = _, i.e., it coincides with the condition of con-¢

_- of the seriesvergence

_ = (- 17 bob,... .

" _=_ B__,B_ ' (3')
_ the remainder of which is, from (3),

b,,b,,,,..2b,,_+____2•
A___ a = (- 1)n b0 b, .. b,.__ (- l)V "B,::_B,+_+_ '_1_ V=O

we then have the distinct integral given by

e n =:- Aa+ ¢ B,4.

All this is but the condition of convergence of the continuous fraction /230

26
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@

i,° __
k_ ..... I,, (3'C)

a o 4

_' (! I ;

in a new form which, compared Eo the usual form, has the advantage of adapting

itself to the extension of recurring equations of any order. The numerators

and denominators of (3'C) do not differ from A2, A3 .... An,... and B2, B3 ....

Bn,... , respectively. The reduced (virtual) quotients A0/B0 and AI/BI are i/0

_ and 0/i, respectively.

The condition of existence of the distinct integral coincides with that of

I the convergence of the continuous fraction. The value o now under considera-
_ tion coincides with the value of the continuous fraction and the distinct inte-

gral on then is defined by the initial condition oi:oo = -o.
16. Poinc;r£ has been credited with a proposition which has great useful-

i .... ness in the applications of the theory of recurring equations. We shall demon-

i strate this proposition for the case of equations of the second order, referr-ing the reader to the original memorandum* for the demonstration in the case of

equations of any order.

Poincarg's Theorem. "Let lima n = a, and limb n = b in Equation (1).
n=_ n=_

The equation

_i l_-at- b=O, (4)

which is said to be characteristic of (i) has roots a and B and lal > [BI. The

limit of the ratio _n+ll_n for an integral _n of (I) is generally equal to

and &xceptionally equal to B."

*On Linear Equations, etc. _merican Jour_.al of Mathematics, Vol. 7, No. 3,
i 1885.
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(a) We put, _n being an integrai of (I):

g,=X,,+Y. , f,,.,=aX.+_Y.,

from which we deduce

f_+,= Xn+,+ Yn'-,, fn+2= "_X_+,+ _Y,,+,.

From these we deri_=, taking into account Equation (i): /231

(,s. a + l,n - _) En + (o. _"+ b° - _ ) _i_"7""
X,,+, ......... _t- _ ........ '

(a_ - an a - b,,) Xn + (a_ -- a,, _ - b.) Y,,
'_,'a"&-| _

and putting

we obtain

¢

_ X,,+,=_X_-(h. Xn+B,,¥.) ,

_ L_, = _ _. + (A_xo + B,, L),

¥ where An, Bn tend to zero when n = _. Having placed Gn = Yn : Xn' we have, on

dividing the preceding equations term by term:

1 "

(5)

(b) A positive number k can now be determined, which tends to. zero with in-

creasing n and such that for each positive number k between k and i/k

_' 2,"

i
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from one n onward. The preceding inequality is certainly satisfied if

17!+_(I +_I< ='-=( i +I0,

beinB a positive number superior to IAnl, /Bnland that it can be assumed to

be arbitrarily small for a sufficiently large n: it is sufficient to require

k<
2. 1 ' --/i<' 2_

1

so that the required _ number is /232

2-

k I_I :iqf-6:

i. (c) Let s be taken arbitrarily small and n sufficiently large in order to

have :

I:%!< _-, 1_,,!- _,

i if IGnl is also less than e, we shall have from (5)

. !al-_(l+O'

and this can be made arbitrarily small, and in any event less than unity.

_'. (d) This havir,3 been established, let us examine in what manner Gn is vary-

ing with increasing n. Three hypotheses can bc made:

:{ l_s_t. For a given n, IGnl is less than _ < E. Then, through (c), IGn+iI <

i, therefore, it will also be less than % or it will be between % and i/%.

t
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2n__d.Let IGnl be betwcen _ and 1/_. It then results from (b) that

]: +]L+:L,_,_!<I_ - A,,--_,,o,,I

and therefore IGn+I/Gnl is less than a quantity less than one and it remains so

as n increases.

3r___d.Let finally IGn] be greater than i/_. Then IGn+ll either remains so

also or it is less than 1/%, reentering into one of the two preceding hypotheses.

It is evident from this analysis that if IGnl becomes less than i/_ for

;. one n value, it would tend to zero when n _ Except for this case, it is pos-

sible that ]Gn]may be always greater than i/%, and then its limit is infinite

_ when n --_.

T (e) However we have

5

_: in the event that Gn = Yn : Xn tends to zero when n = _, we obtain from this:/233

_ in the event that Gn tends to infinity, we then have

9

_4-!

4

q.e.d.

17. Henceforth, we shall allow Equation (i) to contain linearly a vari-
4

able x in its coefficient an,

-_ 30
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i

I

_,_; 0,_----UnIX + (_,/I,

:. so that (i) will be _ritten:

L_.=(o_'x+ _,")/,_.,+r,,g,. (5)i

"- The integrals An and Bn in this case are whole number r_tiona! polynomials in x

and it is readily evident that An is of the rank of n - 2 and Bn of the rank

-!, n - i.

It is evident from Sec. 15 that the necessary and sufficient condition

for the existence of the distinct integral of (5) is that the following series

_- be convergent

': _ bo b, • • • l,__...

_ = _-(- I)"_ B__iBy '
"_ V=2

.?

"_ having made this hypothesis, we have

./b oh,..;, h,,_, bob,..-b., )h,, a=(- I_ l..... ......_,-_- , _ _,._,,,_:, --<_i,._,;7. + ....

If now the series involved in this second member and the terms of w:tich

:f are functions of x, it is expanded - formally - in a negative power series of

x, it is immediately evident that this series takes the form
i

C (w f;:t

a""---'--'+ --'-_" + _ + " " ' '

. since Bn is of the rank n - 1 in x. We shall express this fact by saying /234

that such a series is of the rank -2n+l in x. Upou forming then the distinct

integral on - _l - °Bn, this integral will be of the rank -n. Consequently:

"The distinct integral of (5) is __ormally representable by means of a sy_-

: tem of negative power series o_ x, of the respective rank -n."

It can easily be demonstrated that Equation (5) cannot have a _econd inte-
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gral of this form since the condition that _I, _2"'" _n'"" be a negative

power series of x of the ranks -i, -2 .... -n .... is sufficient (if _0 = i) to

determine unambiguously and successively all the coefficients in this s_ries.

Now it remains to be seen if the developments in negative power 3eries,

obtained f__o_ in this manner for the on values, have another significant

effect: this will be evident from the subsequent Sections, in which it will be

damonstrated that "if an' ". an , bnhave finite limits when n = =, a circle

with a center in the origin and with a finite radius can always be assigned in

the plane of the complex variable x. Outside of this circle the distinct in-

tegral through (5) not only does exist, but this integral is also constituted

by a system on of the negative power series of x, of the rank -n and convergent

: outside of the said circle".

18 (_) With this effect we shall assume that none of the a' values nor• n

gheir limits can be null: then a simple change of variables permits of unre-

: strictedly setting

" O lira b.=" I.lim a,/=2 , lira a,_ = ,

i¢,i

The characteristic equation (4) of (5) thus becomes
k

_:" z 2- 2xz+l :.0, (6)

_/:_ having two roots which will be denoted by a(x) and i/_(x); the modulus of a(x)
being P, P > i can be assumed for each x value, with the exception of the real

#

...... x values and those between -i a_id +l. The x values by which _ is maintained

i _onstant are foun6 on an ellipse with foci at the points +i and -i.

_i (b) All the an ' values being different than zero, their moduli will have a

_ lower limit wnich can be 2 and i_l a different case will be an effective minimum,

32
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• " and bn willdifferent from zero whicil we shall denote by A _ The moduli of an

have superior limits which we shall indicate by A" and B. Finally let n be an

arbitrarily small, but fixed, positive quantity.

We des_:ribe a circle of center x = O and of radius

A"+D+>;-t 1R=

in the plane of the complex variable x and I shall call this circle R. Being J235

• B 2 (aO aO )B Ithat BI = i, = 'x + " , if Ixl > R, we shall have

_P,.l

;B 1

thus

If we assume demonstrated up to a given Jndex the inequalit}_

this is true for the following index, always assuming that Ix I > R, since

f>,,,._,,+,= l o.',=+ c,."+ b. :> [a,,'xl- ia."l , _.__1

However, Poincarg's theorem teaches us that the ratio Bn+I,B n approaches

one of the roots of Equation (6): therefore, tl,e limit of this ratio can only

be the root _ of the modulus greater than uuity; we conclude, nsmely, that with

the values Ixl > R, we have

_3 ',,

4

_' o_,.,._,
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(C) Finally let us note that for the values Ixi > R, the Bn(X) cannot have

any zero values. If indeed we have Bn+2 = O for such a valu_ of n, the follow-

ing equation would result

b,B,,

. _.'m + e,," = _t '

an imnossible result because the modulus of the first member is greater than%

B + q + I, while that of the second member is less than B.

19. The considerations developed in the preceding Section now permit us

to demonstrate that

"For values of x outside of circle R the continuous fraction defined by

_ Equation (5) is convergent (in other words Equation (5) has a 'distinct inte-

'-I' gral')."
We note therefore that the value a of the continuous fraction is given by

• series (3') of which it then suffice._ to show the convergence. If we con- /236

sider now the te_rmsof the above mentioned serie_ by their absolute values, the

i ratio between one term and the preceding one is given byb__,I__I

II_+,

and this tends to the limit l/[a2(x) J = i/_2 when _ _ _, and where 0 > I.

_ Having then excluded the possibility that the terms of the series can be

i infinite (Sec. 18, c) for values of x outside of circle R, we conclude that for

such values of x the series (3') converges absolutely, q.e.d.

34
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£

= 20. The series (3') can oe again shown to be convergent to the same de-

: gree outsi4e of circ]_ R.

In fact, the modulus of the ratio of one term of this series to tlie preced-

ing one is

B,,_, 1_

now the quantity n, which can be chosen arbitrarily, provided R is selected

properly (Sec. 18, b), can be made to be (k being a positive number less than

i
unity)

: then it follows that

• b_--_-r_,<_ < I.

Since R has been chosen in accordance with the value thus fixed for n, and k is

independent of x, the result is that (3') converges to the same degree outside

of circle R. The series denoted by Sec. 17 with on h_s the same property which

is composed by the remainders of _.

However, since the series o and on are convergent to the same degree wben

Ix I > R, a known theorem on the theory of functions* shows that these series

are consequently analytic and regular functions of x in that region and, as

such, they can be exparded in series of decreasing powers of x. The proposition

*Weierstrass: The Theory of Functions (Zur Functionenlehre). Monatsberi-

chte der Akad. aer Wissensch. zu Berlin, 1881.
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that we have enunciated at the conclusion of Sec. 17 thus remalns est=blished,

namely that "the distinct integral of (5) not only exists outside of circle R,

but coincides with the unique _ntegral represented by the negative power /237

series on of x of rank -n, which converges outside of the same circle _".

21. The propositions demonstrated in the preceding Sections now permit

applying to An(x), Bn(x) and On(X ) all the properties that there are for the

numerators, denominators and remainders of the reductions appearing in the ex-

pansion of a given function in an algebraic continuous fraction. We shall not

dfscuss these properties further because the reader can secure information on

them by consulting the first part of Vol. !I of the Handbook of Spherical Func-

tions by Heine as well as Chapter V of the first part of Vol. I, and the book

by Poss_: On Some Applications of AiKebraic Continuous Fractions (S=. Peters-

_ burg, 1886). We shall limit ourselves here to formally establishing an expan-

sion which we will have to refer to in the last chapter of this work, where the

convergence condition_ for a case with considerable generality will be given.

_ It is noteworthy that, as far as I know, nothing has been said in general about

'_ the convergence conditions of such an expansion. Let us rewrite Equation (5)

__ in the form

__, a.&+_ + (b.'x + b.,'9_,_, + c. i = O, (5')
%

and together with this let us consider the other equation, which we shall call

._, its inverse

: *The studies related in this chapter, as those of the following chapter al-

so, can be extended with the same methods to recurring equations of order great-

._ er than the second. In the recent Memorandum: A Contribution to the Generali-
: zatlon of Continuous Fractions (Memo. of the Academy of Sciences of Bologna, S.

V., Vol. 4, 1894), I have also demonstrated the existence of the distinct in-

tegral and its representation by means of a negative power series of x, for

sufficiently large values of Ixl for equations of the third order in a way ana u

logous to (5).
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- ,l,_ _f,, + _b,_.'- -. b,,", f,,., + c:._i L,-: = 0.: (5")

- Let Fn(z) be an integral of the latter equation, for which the initial condition

c = (bo' : + t,o") S, -_ :', 8.,.

holds. Then by multiplying (5') by Sn+j.(z) and by summing over all the values
,g

\ of n from zero to infinity, and by considering for -_nthe integral Bn(X) de-

termined by B0 = O, B1 = 1, we have:L

c.

-x _' b' B _x_ • " _ bt"S.' .-,..-_) aa--,., j S,,(z) = D,(h_"S,.'-,.','L,__+ B:, %."j, "- _ • • •
n=|

now, upon taking (5") and the initial condition stated above into account, /238

we obtain

X _" b' ' [ (:.; :. bo': .< I:
_=( : i 2 "

or

(r..- x) .._" I...,' 1',,,':,'. S. i.,:) = c

hence

I l=

....... '2 b',,__ , I_, _X) S.(Z) " (7)• _ --_ C ,I:-i

This is the formal ekpansion that we wished to establish* and the effective
/

validity of which will be demonstrated in Sec. 55 for the case in which an, bn' ,

, bn" , c are whole integer rational functions of the subscript n.

*Heine gives _his development in the case of an = cn = 1 (op. cit., Vol. I,
p. 203) but he limited his comments to: the convergence is still assumed. It
is also presented by Jordan, Cours d'Analyse, 2nd _dition, Vol. II, p. 259. In

the works cited equation (7) was established by another method: the one used

by us has the advantage of being able to be extended readily to include recurr-
ing equations of any order.
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CHAPTER IV

LINE_.R DIFFERENTIAL EQUATIONS*

22. TLeorem. "A necessary and sufficient condition so that an identical,

homogeneous and linear relation with constant coefficients exists between r

analytic functions of x, _i' _2,''" _r, which are reBular in a common interval

of values of the va=iable, is that the determinant /239

- ?, _ ... %
/

D@)=
.,.,,.** *

_ is zero, in which the derivatives with respect to x are denoted by superscripts".

(a) The condition is necessary. If indeed, Cl, c2,.,, cr being constants,

_ we have

it is sufficient to derive r - i times with respect to x and eliminate Cl, c2,

... cr to see that D(x) = O.

(b) The condition is sufficient. Let D = O, the reciprocals of the last

_ line being _O, otherwise the theorem wou%d be demonstrated b_ one of them. Upon

ii deriving D with the rule for the derivatlon of determinants, all the determinants

which are obtained are identically zero except for one, so that we have

•In this chapter we are speaking exclusively of analytic functions with

the variable x, although some of the propositions found here, especially those

of the first Sections, are also applicable to non-analytic functions, provided

? that they have derivatives of the first order. The theorems in this chapter

originate with Fuchs (C_elle, Vol. 56); the considerations of Sec. 27 stem from
Casorati (Memorandum cited).
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_, % ••• 7,

_i F _ T _ w

D'(x) ...........

T2 _ "_ " - • Yr

_.!CJ _'_ . . . _,r¢0

and in order for D to be identically zero, D'(x) = O. _ow if UI, U2,... Ur are

the reciprocals of the first line in D: those of the first line in D' will be

the respective derivatives and we shall have

Ui?, +U,_: + 0, . +U,_. =0

t .U, ?(r :) _, Uo. ":2"',r-_3 + . . .z.. Ur "_r(r'_) = 0

and /24___0

/ U:'?, +U'..% _ • . • + 1/'_%=0

. • . • . o o • . • . . ° .

, Ul'_f (r'2) �['2'_._I*-_'_ + • • • + F r' _r (r-_') ==0,

\,

then, because not all tlm determinants of the matrix of this system are zero,

we have

U, : U, : ... : I'_==t',' : I'.J: ... : l"r'

from which

d 10gUt_= dlog__U_ tit,: U_ = constant,( _ d3.: '

and therefore a linear relation with constant coefficients exists between _i,

_2"" _r, q.e.d.

23. We shall consider homogeneous linear differential equatioas of the

39 .,_/:
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nth order in the follo_ing:

Ao_/")+ A,y"-" ).... ,_,,y : 0, (i)

where AO, AI... An are analytic functions of x, regular in a common interval of

values of the variable.

(a) An equation of this type has as many linearly indepn',dent integrals as

the number of units of its order. Assuming this co be true for the equation ol

_ order n - i, let us put

_ substituting in (i)
p:

Ao_t _'_+ (A,_ -__tAo_'}_tc'_-,_+ .... 0, (2)

_ where the term in u is zero and therefore (2) is a linear differential equation

_4' of the order (n - i) in u' and has, as supposed, (n - I) linearly independent

_ integrals _2' _3'''" _n" Let us now consider the functions

+,-

_ all these will be ir_tegralsof (I): moreover, if the determinant D(x) is formed

for these functions, it is immediately evident that it is equal to /241

...
_yt

• • • • , , ° ° o •

I
for hypotheses different than zero.

(b) If #i, _2"'" are integrals of (i), each expression Cl_I + c2#2 +...

' t. will also be an integral.

(c) If _i, _2"'" #n are n linearly independent integrals of (i), every

40
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other integral _ will be of the form

/

_ = c'_t + c_a + "• •e,,_n :

in fact, by substituting the values e, _1' _2"''' Cn in (1) and eliminating

the coefficients _3, A1,''" An among the identities thus written, we obtain

5.1('_ .., • . . _, %
=0

• • • • . . . . . .

_..(n) ":n • • • .":'. ._n

with the result (Sec. 22) that a homogeneous linear relation wita constant co-

efficients exists among _, _l,..._n.

24. A system of n integrals of (I), among which no homogeneo:is linear re-

lation with constant coefficients exists, is called a fundamental s_vstem of

Equation (i). Let _i, _2...., Cn be _uch a system: if we set __

¢_= ae,_, +_i..,-7._+... o..,,_,, , (i= I . 2 .... :0 (3)

• the determinant being 6 = E +-al.la2.2...an.n, different than zero, the system

_i, _2,''" _n will also be a fundame,ltal system and vice versa, each fundamental

system is expressed by means of one of these in the form of (3). Let A be the

determinant formed, as D, with the integrals ¢i, _2,''" _n, it follows from (3)

that /242

_=_D,

which is expressed by saylng that D is an invariant of Equation (i). If in the

determinant

,Z
q

41
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D=
• • ...... . ° .

¢_i{n-l) _2(n-C) . . . _n("-¢1

the last line is multiplied by A1 and is added to the first, second, ... n - i,

multiplied respectively by An, An_l,... A2, we obtain -AoD'(x), whence we havre

_: for D the notable expression:

:?

_:,. _ A]_:dm (4)
,__ D(m)= ce

._ 25. Fuchs theorem. "Equation (i) has a fundamental system of integrals

which are regular analytic functions in the neighborhood of the point xo taken

_,. in region T in which the analytic functions

._i.'. A, A; A,,

:_
are regular."

_: For the sake of brevity we set Ai/AO = Bi, (i = i, 2,... n) and Equation

}; (i) will be written
_f

yCn)+ B,y(n-')+ B2y(_-')+ ,.. + r_,,y=O. (i')

?:: The expansion of the functions Bi in the neighborhood of xo will now be
i
,, considered and for simplicity we set x = 0 instead o" x = :'o" By denoting with

p the radius of a circle of center s = 0 within which BI, B2,... Bn are regular_

we have, when !x[ < p,:

, B_---o_._+o_._m+_q._+.., , (i=I ,2,..,_0.
f

-i
J

We now attempt to satisfy (i') by putting /243
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, i

?7=f(x)=ko+#':_ _ l_2r,_+. .}:,m"+... (5)

The coefficients ko, kl,..., kn_ 1 having beer, arbitrarily chosen, and noting

'< that k_ = 1/',_-_ (_)(0), we can determine from (I'), by means of successive de-

rivations, y(n) y(n-'.-l)y(n+2) .. as a function of y y', , ,. , ,-.- yn-l, :lamely kn:

kn+l, kn+2,.., as a function of ko, ki.... kn_I. In _ie expressions of k_ as a

function of ko, kl,.., kn_I only operations of summation and multiplicatlon on

the quantities ai._ and ko, kl,.., kn_ I are involved, these latter entering

_- lintarly; °

The equation can then be satisfied formally with a expansio._of the form

(5), containing liuearly the n constants kl, k2,.., kv. It ramai_s to be

demonstrated that this expansion is convergent in the neighborhood of x = O.

For this _urpose let us denote by M a positi_.enumber greater than the

:+ maximum modulus of BI B2,. En within the cirole of cen_er x = 0 and radius -

r < O: by means of a well-known power series theorem we shall have

i ia,.,l<_-

Let us now consider the equation

- !Y_-"_ " + "'+_'+¥) (6)9""

7"

upon develcping in series the coefficient of y(i), the general term of this

series will be M/r_x_, therefore _reater in absolute value than the correspond-

irg term in Bi. Let us now set

Y=_0+_, m+_ m_'+'''_v+''' (7)

' Iwith Xo: Ikol,xI: Ikll...., '.i<-i-" ikn-i ; equation (6) will allow us _o de-

rive the values of Xn, Xn+l,... as a function of XO, XI,... Xn_l: the calcula-

tions required are the s_ma as those used to obtain kn, kn+l,.., as a function ,
J
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of ko, kI .... kn_ I from (i'): only that in the %v, instead of the ko, kl,...

kn_ 1 values, their moduli are involved, as well as, instead of the ai. v the

positive quantities M/r v, greater in modulus than the corresponding ai._, will

be involved. Therefore the coefficients An, %n+l'''" wi±l all be pos_=ive /244

and we shall have %v > Ikv! • Therefore, in order to prove the convergence of

the expansion (5) it is sufficient to prove the one of the expansion (7).

For this purpose we observe that the recurring equation in % , is ob-

tained from (6) by substituting the expansion (7):

()_. (v_-71)(v+Ti-1; ,. ('_ ' " It-i)('; -2) (v_l) + 3I +

'- + (v + 7_ - _) .,, (v -k 1) 3I).v+,_.2 -_-., (v + _) ;lkwt + 3I) v ,

: now it is immediately evident from the theorem of Sec. i0 that this equation

defines such a system %v that the series E%vx v has a determined radius (non

zero) of convergence: at this point the theorem is proved.

26. Given a linear differential equation of the form (i), a point Xo, in

i_ which the functions AI/Au, A2/Ao,... An/A O are regular, will be called a non-
%

_ _i_n_ular point for the eq_lation: every other point will be a singular point.

_ Then we can state, as a consequence of the preceding theorem, that:

_:r,,_ "In the neighborhood of each non-singular point of a linear di_erehtial

w_

_ equation all of its integrals are regular and analytic funcLioas."

From this, and calling on the general principles of the theory of analytic

functions, the analytic continuation of each integral of (i) can be _onstracted

? in each connected area in which Aj/AO, A2/Ao,... An/A 0 do not have singular

points, and the analytic continuation of an integral will never cease to be an
,_

i_tegral of the same equation.

27. Let xo be an isolated singular point of equation (i). In the event

44
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L

i_

#

i

that xo is the point to infinity of the sphere-plane of the variable x, we
k'

c:rr_ out_ the tranqformation x = 1/z. It is always possible to assign a neigh-

_I borhood (r) of xo within w_ich no other singular point of (i) is found: assum-

ing _he counterclockwise rotations to be positive, let the variable x, without

leaving the neigbborhood (r), execute a positive turn around xo: when, after

execution of this turn, the variable returns to the point of departure x, an

integral _(x) will have changed in value, generally, and the new value is in-

di_:ated by _(x). If now it is Lioted that the function

!

t = i_i Iog(z - _o) (s)

is increased by 1 for such a turn, ,(y) can be denoted by Ct' $(x) by _t+!, /245

and chus by _+2_ St+3,...wh_ch becomes _(x) after two, three ...turns cf the_ - ,
va_iable in the positive directir,n.

't

Now, these n + ! functiens _t, _t+l .... _t+n, are all integrals of (I) _

and therefore an homogeneous and Ifnear _elation exists between them, whose cc-
: efficients are constant with respect to _, namely, functions of x with a _ingle

value in the neighborhood of (r); this relation has the folnn:

't _ 0

,! _o_,+,,+_ ,+A_ ...._ _ ... A,,_= , (9)

_[ and with respec_ to _ considered as a variable, it is none other than a homo-

I _eneo_s linear equation with constant coefficients, and as such can be integrat-
!.

ed as _ndicated in Sec. 14. We shall suppose that in this equation _ signifies

.i
the general integral of (1), with n arbitrary constants.

If, having formed the equation

A0_o_ + _,_"-' + ... A,.,+_= 0 (xO)

this has all its roots distinct, _I, _2,"" _n, the integral of _quatiop (9)

- _5 ,_ _.
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%

I

will be given, in accordance with Sec. 14, by

IItt.Jit q-_l_,.__/_. • .. + ll_t._nt.
(ii)

where Ul, u2,...u are constants with respect to t, namely, functions of x with- n --

a unique value in the neighborhood of x . If equation (9) has multiple roots,O

and _ is, e.g., a root of multiplicity h, for the corresponding h terms of (I0)

(See. 14) the following will be substituted

: _lt(vi + v2! + - • • v_t_-') "
- (12)

Having performed this, the value (8) is substituted in the expressions (Ii)

_" 2#iph
and (12) for t, and these are changed respectively, putting _k = e , into

tt,(X--Xo) p' +tt,(X--a3ol _ + • . + lt,(x - Zo)p" (13)

¢
z and

(z - _o)'°'(v, + v'_. log (a: -- a:,) +... v'h loga-' (a_ - _%)).
(14)

._ Now if we substitute _ in the first member of the equation (I) by an expres- ./246

sion of the form (13), we evidently obtain an expression of the same form, name-

! _ !y, of thp =orm (ii) in t. However, thi_ (See. 14) cannot be zero unless all

L ts o_ficients are zero and the same thing is true if an expression of the

i form (14) is put iq (i) whence it can be concluded that:
"If the equation (i0) has all its roots distinct, equation (I_ admits n

integrals in the neighborhood of Xo, called canonic integrals, which form a

fl,ndmmental system

I

_;(a_-z0)Pk , _=_I0g_._a , (_=I.2,. n)
(15)

where uk is a funation of x rith a unique value in the neighborhood (r) of Xo;

if equation (i0) has a multiple root Ul' of multiplicity h, (i) has h in=egrals

46
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in the neighborhood of xo

"_ ( _,(x--xo)_',

_',"- "__'%lo._,cm-- _) + t-'1!x, - a'_)?'
, (16)

" i " '!' I rr #t_ , ,_, _ (h_(_It) .0_ I,_J--#.61 .'- V,I lO_ #l-' I'm_ x , :. 2- _,#lf/';) (_l[___[l:tl) ?11.° • , • V' ..° . II

J, 28. (a) The demonstration of this theorem of Fuchs that was given in the

preceding Sec. stems, as stated, from Casorati. Equation (i0) has been called

the fundamental equation relative to the singular point Xo, and the determinant

- the equation which has Pl, P2,''" Pn for roots end is deduced from the funda-¢

2_ip
mental by setting = e

(b) The following method is suitable for forming the fundamental equation.t
!

Let _I, "_2.... _n be any fundamental system of (i) and :_a canonic integral.|
1 .... When x rotates around Xo, _k will change into a new integral _k of (I) and thus _

-- (k = I "_ li) ;7_= _., _, + _..- 7..+ --. , - ' " " (17)

t these fo'nmulasgive the linear substitution which the system (_i' _9,"" _n)

' undergoes after one rotation of the variable around xo. Now having

it will be, having set /247

,_:c, 7, + c,_2 + . • • c,,9_ •

substituting (17) and noting that a homogeneoua linear function of _I' _2 ....

_n with constant coefficients cannot be zero unless all its coefficients are

zero:

47 ' '_,
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1: [

c, al. + ca_2_ +-.. + c.(_.. - w)= 0

from which

J a_l'-_ _21 • - • _al
|

O.

I_ " * . • . * . • * * . . *

This equation has the same roots as (10) and therefore coincides wlth it;

_. it does not depend on the fundamental system from which it originates (because

> its roots are independent of it) and therefore its coefficients have been given

_ the name of invariants of the differential equation. _

_: (c) The determinant equation can be obtained by the formation of the fun-

setting _ = e2_i0 in it" however, y = (x - Xo)° can
damental equation_ after

_ also be placed in the differential equation (i), then expanding the first mem-

[_" ber of the equation by means of increasing powers of x - x O. When in this de-

velopme_t a minimum power of x - xO is found, its coefficient, set equal to

Zero, will give an equation in 0 and, precisely, the determinant equation.
The f_imulas (16) are presented instead of (15) when th_ determinant equa-

'j tion has equal roots or roots differing from each other by integers.

(d) Results analogous to those of this Section and of the preceding one

i_ would be obtained, assuming that the variable rotates around a system of many

_i singular points.

ii 29. The operation by means of which, given a system of quantities _I, _2'
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"'" _n' we obtain the quantities $i' _2 .... _n by using the relations /248

i--ca'-= rs2,".il + _2_._.__-- • • • + c_,,_?n

. • . , • • , • . . •

is called linear substitution; this o_eration is defined by the system of co-

efficients a,, , _:: , .... ai,,

_[Z! , G22 * * " ° ' '_2n

......... (A)

7 _nl , _n_ I • • " , t/un"

Since the determinant of the substitution Z±allal2...ann is assumed to be dif-

ferent from zero, we can express _i"'" _n by means of an analogous operation

performed on $I, $2"'" _n' and this operation is called inverse of the first.

The operation under discussion, which can be represented in abbreviated

form with _(_), is the element of _ calculus called the calculus of linear sub-

sti_utions; the inverse operation of A is represent by A , if a second OP-

eration is defined by the system of coefficients

'_,, , _,,...,_,_

(B)

the operation which consists of executing first operation A, then B on _i' _2,

"'" _n is denoted by BA. It should be noted that AB is not generally equal to

BA: when this is the case, (that they are mutually equal), tha substitu- /249
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tions A and B are said to be commutable. It is easy to verify that ':the de-

terminant of the product of two substitutions is equal to the product of the

determinants of the single substitutions."

It is also immediately evident that if substitution A is applied to a sys-

tem #, so that _ is changed into A(_), a system _ = B(_), obtained from _ by

means of a linear substitution B, is changed into BAB-I(_).

When an ensemble of operet_ons in suoh that, by combining the operations

- therein: contained in some way, operations of the same ersemble are always the

result, it is said that that ensemble forms a _roup.

30. *Given a linear differential equation of the form (I); let xo be a

non-singular point and £ a closed line and, departing from Xo, let us return

to it without passing through any singular points. In the neighborhood of xo

let _I, _2"'" #n be a fundamental system of integrals: this is such that #n

will be a positive integer power series of x - Xo; if the analytic continuation

of each of the_e series expansion is performed along line _, it will return to

point xo with an expansion equal to or different than chat with which it had

: departed but which in any event can be put i_ the form

_h = _hI_I+ _h__2_ " " " + ah'n _n" ,

2 By following _he line £, a linear substitution A then performed on the fun-

damental system _h, thus a linear substitution corresponds to each line which

leaves point xo and returns to it. Since the ensemble of lines leaving point

*For the concept of group of a differential equation and for its determi-

nation, see also the Memorandum by Fuchs (Crelle, Vols. 56 and 65) and Hambur-

ger (op. cir., Vol. 73), those of Poincar_ (Acta Matema=ica, Vols. i and 5, in

various locations) especially that On the Groups of Linear fuuations op. cir.,

_ Vol. 4 and Volterra (Memoranda of the Italian Society o_f Scle_ces, S. Iii, Vol.! 6, and R. C. of the Circ. Mat. of Palermo, Vol. 2). See also Jordan, Cours

d'_alyse, Vol. 3, p. 193.
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xo evidently constitutes a group, and since the line composed of the two lines

_' _" successively traversed corresponds to the product BA of the linear _ub-

_ stitutions corresponding to £', _", it follows that the linear substitutions

which can be performed on the fundamental system _h also constitute a group.

This group is called the r__rou_of the differential equation. If instead of

the fundamental system _, another, @, is considered, since _ is deduced from

by means of a linear substitution H(_), to the substitutions A acting on

correspond the substitutions Hf_H-I(_) on _. The latter substitutions can be

regarded as constituting a group which does not differ from the first because

one and only one substitution of the one corresponds _o each substitution /250

of the other and vice versa.

31. Let us consider a linear differential equation (i) with a finite num-

Zp besides the point z = _ and with uniformber of singular points Zl, z2,...

i coefficients. To each singular point z corresponds a system of canonic i_te-

grals (Sec. 27), for which the linear substitution which they undergo as a con-

sequence of a rotation of the variable around z is

' I (.q 0 0 . . . 0
- I

0 u, 0 . . . 0

; .,,.°oio

!! 0 0 0 ... _o.

'_i in the case that the fundamental equation has all its roots _ distinct, and the

modification to be performed in the event that some of the roots _ are multiple

is readily evident. Now the group of the differential equation (i.e., the sub-

stitutions undergone by a fundamental system for all the closed lines departing

from the same point) will be found when we know the substitutions undergone by

51 ...._
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this fundamental system for the simple lines which, departing from any point Xo,

make one rotation only around the r + i singular points, since every other

closed path would lead to a combination or reiteration of these. These substi-

tutions will then be known if the roots of the fundamental equations relative

to 4 + i singular points as w=ll as the relations which join the primitive fun-

damental system to the canonic integrals relative to each of the r + I singular

points are known.

• It should be noted that a simple line around x = _, described in a direc-

tion assumed to be positive, can be reduced to the succession of the simple

_ lines described around the points Zl, z2,...z in the negative direction: it_ r

_ follows from this that the said SI, S2,...Sr, the substitutions undergone by

the system _ through the rotations around Zl, z2,...Zr, and Sr+l, that under-

_ gone through a rotation around x = _, we will have:

S, S2... S_ S,+,(_)=_,

or, sy_olically, Si S2 . . S S = i.r r+l

J251CHAPTER V

REGULAR LINEAR DIFFERENTIAL EQUATIONS -

_ APPLICATION TO THE HYPERGEOMETRIC EQUATION

32. For applications of the preceding theory we must consider the equa-

_ tlons (i) in which the coefflclenus A0 AI,...A are of the form' n

Ae =Po _ • A, = Pe"_"P, , A2 = Po"-'P2,. • An= P,_, (A)

where PO' PI""Pn are whole number rational polynomials in x of the respective

ranks r, r-l, 2(r-l),...n(r-l). The roots of PO will be assumed to be distinct

and be denoted by Zl, z2,...z r. Such an equation (i) is said to be regular.

We do not exclude the fact that PI P2"" "P may be divisible by the s,me• n
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?

power of X-Zl; so that the equation (i) in which AO, AI,... An are polynomials

of the respective ranks r, r-l,.., r-n is of the indicated form, i.e., regular,

as is immediately evident upon multiplying the whole equation by AOn-l.

33. Let us consider the integrals of this equation in the neighborhood of

the singular point zn and, for simplicity, we reduce this point to zero by
/

putting x' = x - zh. We endeavor to satisfy the equation by means of an expan-

sion of the form

?= _'_(ko + k, _' _ _.:,.'_ + . . .),
?

by applying the method of indeterminate coefficients; by that _ will be a cano-

nic integral (Sec. 27). The term of the lowest rank in x' in the first rember

of the differential equation will be

having been set

Ah= (_lh.o + _l_.j_' _ . . , Oh.,,_r____,,_r-l)) ;

now since this term must be zero, the equation (determinant equation) /252

4(?)-,,,._--I!...(_-_-_-I_.-_,,_._-_)..,'?---,+2' +...+,_,_,o?]-_,..-.0,
(18)

should be satisfied and this will give us the values of 0.

Now if equation (18) has neither multiple roots, nor roots differing from

each other by whole numbers, one of these roots 0 = _i will be determined, and,

through tne same method of indeterminate coefficients, having set s = nr and

_(_) = ao._(_-l)...(_-_)-!-_,_(_)..(_ _2)+...+,,,_,._+_,._,

we have the equations
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koA0,) + h, f, (.%+ I) + k_.foO_+ "_)= o,

l__,+,f,_,/.2, +,,-s : 704 l%_.,,,.,f_.... J._ I ':-_ 1;2[ I) +../_ f_(, ,+v)._ 0

by which the coefficients kI, k2,.., kv,..., are determined, k0 r_ma_ning ar-

: bitrary. The expansion _, thus formally determined, is also convergent within

_ a circle of center x' = 0 and with a radius which is not zero: this follows
%

from the theorem of Sec. i0, and from the fact that tilelimit of _h(Pl+V)/
7

-, /0(01+_) for _ = _ is finite.

34. Now we assume that the determinant equation has two equal roots or

differing by a whole number p. This is the same as supposing that the funda-

'2

mental equation relative to the singular point x' has a double root, since tt,e

roots of the equations (18) are (cf. Sees. 27 and 28) the logarithms of the

roots of the fundamental equation divided by 2_i. In order to handle this case,

it is convenient to premise the following two observations:

(a) An expression of the form

where _(x), _:l(X) are power series of x, cannot be zero in the neighborhood of

' x = 0 unless _(x) and _l(X) and therefore all of their coefficients are zero.

_nis immediately follows from the last proposition of Sec. 14 as can be seen by

setting x = e2_i£.

(b) By deriving the cxpresslon xPlogx n times with respect to x, we /2____53

: obtain
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• I

' _,'_X_ loc "_: , _..... °_........ ._,r,n -(,(,,--l)...(p n+l)x v-n logx _ a::-nO's(?-l)''(9-_!l) "

i
this formula is verified fo: n = 2, and it is readily evident that if it is

true for a jJven n, it holds also for n + I.

Having established this, the general theo_T (Sec. 27) shows us that when

the fundamental equation has a double root, an inaegral of tbe differential

equation which contains two arbitrary constants exists and has the form,

= vxtP+ vjm'Plog_',

where v and Vl are functions to a value of x' around x' = O.

If we now take a positive aud whole number power series of x for v and Vl'

"e_a

and we substitute the expression ¢ in the equalize, (1), we shall have, in

accordance with the observations (a) and (b), the following two systems of

equations in which _(0) represents the derivati,e of _h(P) with respect to p:

[ _ofo(,_)+ :Zoto'(,_)=o
I _0f,(?)__,f,(?+i)+h0,_,'(0)_I_,L'(_+ I)= 0,

t • •
,"Lj_s+n L_n(_4-. J -- SbH) -_ICy_s+,,4-1 f, .... ,(p -;-,, - s + n + i) + ... + (20)

• _,, f' .,,(? + v-- S + II) + t- h,, fo'(? + v) = 0+ k_ fo@+ v)H ",_, ....

and
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hofo(_)= O,

(21)

t _.,_,,,,f,_,,(_+,_-s ',-_0_-I_.,.... _f,.,,.,(? ,-,J-s_-,,!:) _...+h.,fo(? `0

i

In the event that the determinant equation _o(p) = 0 has two equal roots, /254

system (21) gives us the values of hi, h2,.., hv ..... ho being arbitrary; then,

tha first equatiozL of (20) being identically satisfied, an arbitrary value is

given te _o and k3_ k2,.., are detezlnined as a f mction of the values already

obtained for the h. In the event, however, that the equation ._o(P) = G has two

roots differing by a whole number _ (taken to be positive), the first equation

of (20) no longek is identically sati¢.fied and it should be true that ho = h I =

_nd

... h__ 1 = O; the h_ is arbitrary and the equations (21), from the _ F _ on,
7

: determine h +! , h_+2,... The equations (20) determine kl, k2,.., up to kp_ I as

a function of the arbitrary ko; k is determined as a funa-eion of this and of

the arbitrary h_, and the followilg equations (20) determine k_l, k_+2,.., by
T_

_ means of substituting in it the values furnished by the equations of (21) for

h +1, h:+ 2 .... The integral _ thus na_ its coefficient determined with two ar-

,_ bitrary censta,_ts; the convergence of the power series v and Vl is verified

within a non-zero circle on the basis of the tL_.orem in Sec. i0 for the series

vI and on the bas_s of the analogous theorem in Sec. Ii for the series _.

jl _u_ analogous procedure is followed in the event that the fundamental equa-

-_ tion has a triple root: we will obtain in a similar way an integral of (i),

containing three arbitrary constants, having the fo_u
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_' = ':Y? 4 _'_'_ ]O_..l" -!- Z::_y._h,gzX',

,.: where v, Vl, and v2 are positive integer power series ol x' converging in a

given neighborhood of x' = O; ana this holds both when the corresponding rco '-_.

": of the determinant equation are equal and when they differ by _:hole numbers.

i.
An analogous situation prevails for roots of the fundamental equation having

any order of multipliclcy.

It is hardly necessary to point out that, h_ving demonstrated the conver-

i g_nce of the expansion in t_e preceding pow___rseries in a circ±e of center x' =
>

) 0 (or x = z) and of non-zero radius, it follows front the _rinciples of the

theory of functions that the radius "_ convergence of tL_ above mez.tioned series

will be at lea_:t equal to the distance of the point z k from the near_st of the

_; other singular points.

_, Analogous considerations hold for the point x = _, as it is evider__ _rom

?

the transformation x = i/z, and the same results are maintained, provided that

:_ tLe positive integer power series of x are substituted with negative integer

power series of the same variable. If we put z_+ 1 in place cf _, and substi-

,_ tute, as usual, i/x for x - _, and, lastly, if we use the symbol ._(x) to repre-

-_ sent a positive and i_zteger power series of x, we can state the following re-

sult :

#,

> "A regular l"near differential equation with singular points Zh, (h -: I, 2,
i

3,... r, r + I) in the paighborhood of each singular point and, in correspcnd-

ence to the simple roots 0 of the determinant equation relative to that /255

'_ point, has canonic integrals of thu following form

(_ - zl,)_ _!_ - :_,1. (22)
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_._.'_ _ _ +;'_._.'_._ "-'--_-'_ _-- __:-_,"_._ o, _+- _ - -'___ :Y _]D_- ".:__ ..... _" _-.--_-_-/ "S.".... _ ,--_._--" _---]_'=_-_.=_._._7;-.-_---

;i)__,_._,_-_ -_._- : _. - ,__ ;. _ . -] .. , . _ . ;- -_ ._. - 7 . ,; - b <, . .... . _-_ ..<_.._ '- :,.

t _

"_,-- The presence of a multiple root # of the deter-_inan: eq,_tion leads tO an inte-

_ _ gral of the preceding form and also to integrals of the for_ :
"2- :

-- I t,'_--,,,o-_(_(=-:_+ i!,(=-:,-)_0_(_-=_))

._ up to an inieg_al containiag logi (x-zb) if the root P and of the order A of

6 : multiplicity.

"<° 35.__By denoting with Oh.k(k = i, 2, 3,... n) the roots of +.hefundamental

"-;-" _ equation relative to the point Zh(h = I, 2,... r, r + 7.) _sumed to be simple

the integrals of the form (22) relative to that point will form a fundame_.tcl

)
syJtem which we shall designate by _h" By representing with Sh the linear sub-

l

_, stitution undergone by _h through a rotation of the variable around Zh, the de-
c

_ terminant of the substitution will obviously be

-¢

"-- !S_,=e =
_f

'-_ Now, each fundamental system $ can be put in the form Th.Oh,Th being the symbol

_. - of a convenient liuear substitution, and the substitution undergone by $ through

a rotation of the variable around zh is ThShTh-I (Sec. 29). Recalling now the

relation established at the conclusion of Sec. 31 between the substitutions

undergone by a system _ in the rotations of the variable around the r + I singu-

lar points, we have

• ° o°T,S,T,-'Ti$,Ti-' T,+, ,+iT,+i I,
6

and since the determinant of the substitution product is equal to the product

•"_ of the determinants of the single substitutions, (Sec. 29) we have

".i
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] . ,

= 2

ii-

IS,! • • •]s,., := i,

_" whence

=- o

and therefore the sum of the Ph.k ,'ill be a whole number. However, the ex- /256
K

_ pressiors (22) are not changed if the _ varies by :,'holenumbers, therefore, we

cmn wri=e without restriction: :

- _, t.-'-,:h-_.= !.
(24)

[ 36. The regular ,ifferential equation has its coefficients formed by the

polynomials PO' PI '°'" Pn (See. 3z) of the ranks r, r - i, 2(r - i),.., n(r - i).

i iven the _i_tgular 9oints z!, z2,... Zr, roots of PO, the equation contains the

. coefficients of PI, P2'''" Pn, in the amount of

_, r.(.+ -I)- ,,_r,- !)

- unknowns; on the other hand, the n(r + i) exponents _h.k, being related by the

relation (24), constitute a system of n(r + i) - i unknowns, l_e number of the

, :-: first is g=nerally greater than that of the second; the equality condition

r.(n+ I'_- _(_- I)
........ ._ =n(r+l)- I

easily leads, as is evident by resolving with respect to n and making an ab- .:

straction of the value n = I, to the equation

i _= _-_-_, whence n = 2, r = 2

O

Fro_ that we conclude that:

,_[_ "A regular linear differentialequation of an order greater than the first

I, order is not generally determinedby the knowledge of its singular points and ._ .;'

I
i
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:::: _ _ _:c_ L_:- - _ • ....

> :

: of the exponents in these points. However, the equation of the second order
O

with two singular points at a finite distance is completely determined by the
i

knowledge of these numbers."

37. The regular equation of the second order which we have obtained in

the preceding Section will have the form
f

-: Po' _' + P, P, Yf+ P, _ = 0,

_ being

" p.= (x- (m--

and PI and P2 whole number rational polynomials of _he first and second order

_ respectively. Meanwhile, an easy linear transformation of the variable pe_nits

_" the singularity of the equation to:be bro"ght into the _oint O and into the /257

: point i, (zI = O, z2 = i); thus, the equation under discussion can be written

z_(_-- I)_ ' �_(_-|)(hm !-_'_'�(_m _ �t�Ø� = O, (25)

where the coefficients h, h' g' g", g, , have to be determined as a function of
f

i the exponents _h.k relative to the singular points x = O, n = i, x = _. Our
&

purpose now is to determine them mnd study the properties of the integrals of

$
the equation (25); then to simplify the form of the equation itself with the

use of these properties.

For this purpose we note primarily that if we set

=_(_ - l)q_' (26)

the function _ will satisfy an equation of the same form (25), whi_ can be

readily verified with the simple substitution. By denoting the exponents rela-

tive to the point x = m with p and O' those relative to x = 0 with 0o and Oo'

those relative to x = i with Pl and PI' (excluding the case in which p and _'
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f

._ f,

g?

_a are equal or different by whole numbers and thus for PO and Po' and for eI and
2-

_:_ PI') the substitution (26) will transform these pairs of exponents into

p+P . P'+P ; _o-P , _o'--P ; P,-q , Pt'-q
>.

respectively, so that ':thetransformati._ns ot the torm (26) leave unchanged

the differences of the exponents _ --0' - '- , _o _o , Cl- °i' '" furthermore, p

and q can be chosen in such a way that for the new equation (25) two of the ex-

ponents not relative to the same point, e.g., _o' and _i'' are equ_l to zero.

Having established this, the determinant equations of equation (25) rela-

'_ tire to [he points x = _, x = 0 and x = I are calculated without difficulty

(Sec. 33) and are, respectively

p(,_+1)- ho +_7 =o,

and among these, t-he "irst has for r6ots .c and_', the second _o and Co'' the

; third 01 and oi'. If -- now suppose, in accordance with what has been said,

!

equation (25) to be reduced so that _o' and _'1 are equal to zero, we shall /258

have

9"=0 , ,3+9'+9 "-0

or

9"=0 , 9=-9'.1

By putting a and _ in place cf p, 0', the first of the preceding determinant

equations gives us

_=_+_+t , _=-_'=a_;

i '

6z -
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then putting °o = I - y, we have h' = - y, whence Ol = Y - _ - B; (24) is thus

• verified by these expressiuns.

By substituting in equation (25) _or h, h', g, g', g" their values and re-

ducing, we obtain the same equation in the form:

(27)

U

This is given the name of hyper_eometric differential equation; its gene-

ral integral i% called a hypergeometric functio___n_n, a particular integral, a

branch of the func£ion. It should be recalled that the substitutions

-_ I 4 z t

which form a _r_/_qu_*,transform (25) into an equation of the same form in which

exchange of the exponent pairs is the only modification.

38. Whenever, by following the method in Sec. 33, we wish to obtain the

expansions of the canonic integrals of (27) around the singular poincs O, i, _,

we shall easily find that these expansions are expressed by means of hypergeo-

meEric series. In the neighborhood of the point x = O, the exponents are 1 - y

] and O_ and the corresponding canonic integrals are
\

z"_F_+l-_ , _+!-_ , S-_ , _) cd F(_',_,_,z);

(the fact that this last series is an integral of (27) has already been /259
&

noted as early as Sec_ 4 c). The exponents are y - _ - _ and 0 for the point

x = i, and the corresponding integrals are

i]! (z-l)_-_'_F(_ _,_.-_, y-_-_+l,l-_) cd F(_,_,_-F_+I-y, t-_),*Called an anharmonic rof_ for the well-known relationships between the

i_i anharmonic ratios which give rise to _ elements in a geometric form of the first

species.

_, 62
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^

finally, tLe e_ponents are _ and B for the point x = _, and the correJponding

integrals are

, .

Tu_T_ing now to the Gauss series, the properties of which are summarized in

Chapter I, we recall that this series is convergent for Ix! < I and possibly

for points of the circumference ixl = i but never for Ixl > 1 if the values of

tbe parameters are finite. The analytic function represented by this series

has an analytic continuation which always satisfies equation (27) and is there-

fore a hypergeomctric function; however, in order to know the value that the

fun:tion assumes when the analytic continuation is performed in accordance with

a determinate line (not passing _hrough the points O, I and _), it is necessary

to know the group of the differential equation as defined in Sec° 27.

39. The determination of the group of equation (25) does not present

greater difficulties than f.r equation (27) and therefore will be performed

through the former. We shall denote with u, u', with v, v' and with _-, w' the

pairs of canonic integrals relative to the points O, 1 and _. The group of the

equation will be completely determined if we know the substitutions undergone

by u, u' for the thr_:e _imple lines which, departing from a point Xo(iXol < i),

surround only one of the points O, i and =, since any other closed path would

lead to a combination or reiteration of these simple lines. We shall denote

with A, B and C the substitutions relative to these three lires.

The substitution A £s known because after one rotation of x around O, u

2_iP0 'e 2#ip'and u' are cl.anged into ue and u 0, as are also known the analogous

substitutions undergone by v, v' during a rotation around i and by w and w' dur-

ing a rotation around _ ....

63 _
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Now setting

f v'
::= ( '11,'= _'Pl V + 6{.),)V _

t Pr. tO'

and l_ = _. w + _

_' = _,_, w + _,.,..u"

k

or symbolically, (u) = S(v) and (u) = S'(w), it is evident chat ,%f the sub- 1260

stitutions S and S' were kno_cn, the A, B and C and thereby the required group

of the equation (27) would be immediately deduced from them.

_:: In order to determine S and S', , we observe that a rotation in the positive

!

direction around x = i is equivalent to a rotation in the negative direction

g

around x = _, followed b !, a negative turn around x = 0, as also can be deduced

from the relation of Sec. 31, which in our case -_ written ABe = 1.

,: Therefor=, we shall have

_, _.=ip :_.i9t' . -2=)o -_r, ip -'):i_'

_- _H c V "4-g._ C V' .= e (_I_ C 'W_ p1_" e Iv'),

*_ and because

g,

•_'_'_'__i we have, by eliminatlng v',
_.(C --C ') _=,h_ (e - C ) W + ,_,_ (f S;(9°+'_'} -- e l(".

!
_ Analogously we find

";' _io 2r.i 9 , -2r.,(90. D-_r.i_ , -2m(9 '+? ) -._r'i_'l)
-_. • _(e '-c ')v=,.%,(e -c " " )w+A_(e o -o w'
]
=_

however, these linear relations between v, w and w' cannot be distinct, o_her-

,_ 64
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wise w = kw' would be deduced, which cannot ['e; therefore, the coefficients of

the preceding relations should be proportional, ant we have

--_.7._....'00->_J --2r./Ct ' _27i O 0_'/' --2-/0.1'

_'2t /321 _ 'o --_ @ --C

Analogously, we obtain, by eliminating v:

_z,2_,_ll e --8 _ _*_la" e " "0 __. 't

_ (, ! i_2z C ' 0 -- £--a'-Q I

and from these equations we can determine the _atios

_21 _ _J2 1_2t ,_22

as a function of one of them, an0, inasmuch as u, u' v' w', v, , w and are de-

terminate except for _,e arbitrary constant multiplier, the substitutions S and

S' are thus determin,_d ......

It should be noted that the determination of the preceding ratios remains

the same if the exponents p, _',... vary by integers; it follows that

"Those hypergeometric functions whose parameters differ by whole numbers

have the same group of substitutions."

40. We should now like to demonstrate that

"If three equations of the form (25) are such that the exponents i.. the

points 0, 1 and _ differ by whole numbers, a linear relation with rational co-

efficients exists among the integrals of these equations."

For this purpose let us denote the c_monic integrals of the first equation

relative to C_e point x = 0 by u and u', those relative to the point x = i by v

and v' those _,_lative _o x = _ by w and w'" then, the analogous integrals for

the second equation by uI and uI' vI and , wI and , and the analogous, vI ' wI ' ':

integrals for the third by u2 and u2', v2 and v2' , w 2 and w2'. i_

:f65
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4,

Then we form the sum of the exponents relative to the point x = 0 for the

first, secoud and third equations and denote the smallest of these three sums

, by Go; thus oI would be the smallest sum relative to x = i, and o the s_allest

sum relative to x --- _.

It will evidently suffice to demonstrate the theorem for a branch of each

. general integral, e.g., through u, uI and u2.

In this event, considering the determinant to be D = Ul'U 2 - u2'ul, this

v gives an analytic function which has the form o'f xC°_[x) in the neighborhood of

_" x = 0. By expresging u and u' as a function of v and v'

' _;"_" l '_L = _t_ V "t- _12 `or

" the same transformation holds for Ul, uI' and u2, u2' as a function of Vl, vI'
¢

_ .... and v2, v 2', inasmuch as the three equations have the same group; thus the

j_' function D in the neighborhood of x : 1 will have the form

so that the function

--_'0
O=D_ (z-l)-"

is regular over the entxre plane except when x = _: thus, according to the

_, principles of the theory of functions, it is a rational or trascendent_l inte-

-_ (l/x) whence

_i ger function. However, when x : =, D has the form x _2 '

)

"!_ and _, + _._._ ._being finite, G will be rational and an integer (and remains so,
:t

: -_ng., _i,endentiy shown _hat oo + _i + o is a whole number). Thus
.'i

'_ 66
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,%

:t r.

_. __ _ ..."

Analogous !y ," , -
o

u.,',.- _L'u,=w%(w - 1_°'6., u'u,-l_u/':wo_:( a" - I)_Os, _, . ,_ _' i:".';",: ..... i • _^

: G1 and G2 also being whole number rational p-olynomiais. It follows from this , _.-
• ' ' ' _ ,._,L_'" '

. , ./ .,._,.C.,-::., ',;'_",
that the identically zero determinant . :_,.._',:._.!,_'.'_:',!_:"_"

= , , ,., ._',_?: ,_.::z__. c::
_, . .. .. ",_.>.:._..-;_':_

t ....... ".. _a,',_...,.',:"'."_:_- , _ . .% ,_,.r,r__. . , ...,_.,,
_.__ _ t_= 1_./ ! " "_" ' " +"'.;-'-'. "_ ' _"_J_-_":_

• "_, ":."-q":_ ' 2. _ .... ' . ... "

,' .' ." a" ._. "_. ,_::_,; _.4," " _. ',_

"" ".......... _';;_"_i '
.............. ___-.._.,% •

d. " "'- ......... : ' __::_

_ The relation among the contiguous hypergeometric"functious is a special "" '-"" ;2:?'-"°_:'_'_ ''.-,._,_,'._..-._,.._.-

_ case of the theorem now demonstrated* " "' "_:' ":"_':"'• -, -" -" '" -9':_
9. _. ':,. :_, [,9,.

_.. . ,.;_..':', " ',
.., . ,J "_, .._ ,_,"¢".T_.

-"T
CHAPTER VI /2:63.,,_.... :._,_.

, , "L'4';._ .,_,. ,.,],,. , '.i
. '. _ .,._. ,'. _.,_.,,_._,,, ,,,_,---

- . . ,,';;_ :.;_:.'._;: ._." ,¢ :
A FUNCTIONAL TRANSFORMATION. ITS APPLICATIONS 'iO THE GENERALIZATION '" "_ .................... '- :., " "'"_,7_'_,_._:_..,Y,_

• • ' ";T,. _.:.,.,'c'_'..:" OF HYPERGFOMETRIC FUNCTIONS ACCORDING TO POCHH_ME.W AND GOUR.qAT. " " ""_: :' """"....

g,., _ -, , ,',. .-".;%.,,:
41. In a regular and linear differential equation .:" ,- .......... ,

.....;:....,,., !. ::';./_.: .'

A0_(,_+A,_-,_+... + A_=0 ' '." ' ..:._'._#,'-:"_;_',._
": _ _;t!_"__:_'a'""I

" .,-"-'" ..g_e4;_' .....
the rank of the polynomials AO, AI. .. An decrease in order of one _nir and. ..',,.:,_-.,:'._,_,.::x_':..!

': '. ,."._'_';"F_'-,:-'.:'.
• ,,,$..,Q...,.,.. ,

therefore the rank of A0 can not be lets than n. If it is greater, and equal . , %,;/?#_'::._e,:,\'
_ . . .,,.. _-::_::._--_¢.,,._..,,',

to n + p, we can set _ = _(P): the equation assumes the order n + o and ......... ...:-_.. :,:.:

ecf. Riemann, Werke, p. 67.

67 "

.... _.. , .;:,,

I : ._,_._ .-' ._:_
I , _.,,:_."s_._-...'...,:,,.'.

1966004770-075



.Z%Y

vA /

;_" the rank of each coefficient is equal to the inde_, of L',,_ _--ri,:_atlve that it

multiplies, l_erefoze, eithe= the regular equatio_ is s ach that the coeffi-

_-
4'

;_ cient cr @(h) in it is of the rank I!, and in ti:iscase we shall call it normal,

_ or it is brought ba_k to c..iscase by means of the indicated se__t_iuZ.

_- We write the normal equation in the fora

_ B -!':-_-. . +I; o_=0.
_'__:":'* ,-' : " " " (28)

?_e where each polynomial _n ia o_ the rank indicated by __ts subscript; the first

:i_ member of this equation is called the normal lincar differential form of the

_rdey n, ar.d_he two follo_ng opet_=:..-n._are defined on this form. The first,

_ Which will be represer_z_ by D, consists of deducing from the form (which we

";_ s_all denote by _(6) or simply by A_ the new form:

__/__ _ DA = B,' _i'-,_ +B'__,_ =.(,--'; +... + _,' _,

where Bh' is the derivative of Bh; thi_ form is also normal, but of .'beorder

n - 1; by repe_ting operation D, the new normal forms of the orders of n - 2,
.If- _ .

_ -n - 3;.. wiil ge obtained

. D_% ,,_;a-_-._ ..P*-'q_ _ " " _ ,= B,," -: �B,_,-.. ..... .

!:i-i _ _ D'A= B,," ._"-::-'r B,,_," ._:"/:":'+ . . . i"1',"" 7_-..
The second _oeration, which will be represented by So, i_ defined by /264

N:
where ( ) represents, as usual, the b£nomlal coefficient o(o-1)... (o-h+l)

_! i'2"3...hIt ks immediately verified that Son is a normal form 3f _he order n, which

'_" can also be wr_tten
_il '/

.

I
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./

•_,._ = g,,_ "_""r _,,,,_, -. _il,,:." =. ;" _. ,;-'. :"_ t:" , - _ . - •

-)• .. +t_,)+JDl'--' 1;2"4-. • - 6 71 -

_; The operations _;i_us defined both clearly possess the distributive property,

_ They are alse mutually co_utable; whic:, can be readily verified. Finally, a

_: simple calculation based on the know_a property of binomial coefficients allows

the following relation to be demonstrated

t so that the quantity o behaves like an exponent in the operative symbol S.

Particularly, SOP, = A, or symbolically, S0 = i, a-d _t a form A I is deduced

_, from-A by meads of the operation SO, inversely, A will be deduced from 31 by

means of the operation S_o , or symbolically, SoS o = 1"._ 2
2

..... 42. Le_ us consider the expression in which o is any number which is

= neither a positive integer nor zero:

,_ : _'_1 = [ =.(0,It (,.)"- " a; _ _--i-_,)-'-'-=_"" (291

_ -
where the integration is extended to a line I so that the second member has

; meaning and thag the integration by parts and the derivation under the sign _re

admissible. The expression /265 ._

; will now be able to be expressed as follows: -;_-

•See my memorandum On Liaear Differential Forms. (R. C. della R. Acca- -+

_ demia dei Lincei, May 8, 1892). ,2--._

•*For integrals of this form, see Pochhammer, Crelle, Vol. CIV. of. one, of _: _

my works in Mem. Acad. Bologna, Vol. II, S.V. ?;%._.

69 .....
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_/ Being identically

. B,(O= "t(x)+ B,'(t- ._),

- t

:_ it will be

f:

- now for the first of these integrals, we have, by deriving (28), then integrat-

e" ing by parts

¢(Om [ -.-(01
a,_i-_V ,(x)+Lt-_--x-Y_J

h

for the second, integrating by parts __

_ [ _'<'>_r =-_''1 " "_')"_

; so that
7....

I _, (O_'O)d-L B,(w) '}' (_) +'B,'_l'(:c)+L'

= S_.B,(z)6.'(x)+ l.,.

. L1 being an expression to the limits of the integration, containing 0(£) line-

-:I arly.
Analogously we find

,_ / %(')=,,"-(,),_a} (t-x)_+' = S_I._(_c)_"(a;)+ L_

)_i_ [ -I_.(O_'."_(odL SoI&(w)_,(")(w)+ L,
where _ is an expression to the limits Of the integration, which contains

. linearly

; ,5
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_0) , _'(0 "_h'"'O! • • * ,-" • -

From these, due to the distributive property of equation S, it follows /266

that

i -_ ":: :';; _ - _,.'_ -_-'-_I,

(30)

where L is an expression of the same form as Lh, which contains linearly _(£),

¢,(£),... _(n-l)(£) to the limits of the integration*.
2

The line X of integration may be chosen so that the part L to the limits is

zero; this can be done either by taking for X an open line and such that @(Z),

_,(£).,o.. _(n-l)(_) are zero at their ends or by taking for "X a closed line not

containing x and such that, the variable having traversed its path and returned
l

to the point of departure (beginning), _(£) and its first n - I derivatives

have the same value. In this .hypothesis, (30) becomes

f _(_) _ = so._(_'),.c,_(i-_Y =' " (30')
• l: D

-and the following proposition can he stated:

"If, @ is an integral of the linear differential equation ,3 = O, the ex-

pression (29) will give us an integral _ of the transformed equation So,3 = O,

the line _ being chosen so that the part L at the limits is annulled. The in-

tegral _ contains the same number of arbitrary constants of _ and therefore

will be the general integral of the equa.tion SoA .= 0 if _ is the .general inte- " %r_-

gral of-'A = 0".

We may add, recalling the property So+ o, = SoSc,, that " _

*This formula is demonstrated by the case in which c is not a positive .-:_._._'
whole number, If o is such, we arrive at the same formula, but the procedure ,_:_

Sn the demonstration is subject to sligh_t but obvious modifications. '__:"

71 _,.._;_
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"The integration of an equation SoA = 0 for a specia± v_*, of o leads to

the integration of the equation itself for every other value of o."

43. The following observations can be added here:

(a) The property SoS_o = i .immediately permits of transposing the definite

integral (29), i.e., of expressing _ by means of an integral containing _ under

o

the sign.

(b) All the equations SoA = 0 are regular, normal and have the _ame singu-

_ lar points. Since _ (0) = 0 is the determinant equation of A = 0 re!aLi_e t_1

•:_ _ a singular point, it is immediately evident that the determinant equation of

_ So_ = O relative to the sa_e point is _(9+o_ = O.

(c) The equations SoA = 0 relative tb different values of o differing from

each other by integers have the same group and therefore n + 1 integrals of

_ such equations ale related by a linear relation with rational coefficients. /267 -
i

i_" _ (Thedemonstration "in extenso" of this theorem is left to the reader, a demon-

: _ stration perfectly analogous to that given in See. 40.

44. It follows from the theorem of Sec. 42 that whenever the integration

• _ of an equation SoA = 0 for a special value oo of o is known, the integral of

the equation for every other value of o can be expressed through a definite in-

; tegral in which the integral of Soo_ = 0 is involved under the sign. Then we

are able to give as many different applications of this theorem as there are

_ cases in which we know how to integrate the equation for a special value of o.

In the following, two important applications of this method will be given; one

e

_ _ " of them, in this and in the three subsequent sections, will acquaint us with

_.7_ " the theory of the generalization of the hypergeometric equation given by Poch-

hammer*; the second deals with the generaiiza_ion which, in a different direc-

iI *Crelle, Vol. LXXI, cf. Jordan, Cours dtAnalyse, ist edition, Vol. III,p. 241; Goursat, Aeta Mathematica, Vol. II.

72 "
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[-

tion, Goursat has given for the hypergeometric equation* and is treated in Sec.

_ 40.

< In the first of these applications, we assume that one of the forms S_A,

(and it can be assumed without restriction that this expression is relative to
2

5 _ = O, i.e., A itself) is reduced to its first two terms. We then set

i A = B, =j";4-B,_, _"_-"then integrating (28) by parts n - l times, always assuming X such that the part

i at the limits is zero, we have:

1 f =("'_'_(/) d£ •._t ......
='(x)=_ : • +(+-:l)...O-a I_: (_-m) _-"'- (30) .

Now setting A = O, _(n-l) will he the integral nf an equation of the first

order and its expression can be given explicitly; (30) will then give us the

expression of the integral of SeA = O. Whence the following result :

"The integral of the linear differential equation by Pochhammer SeA = O
i

can be obtained in the form of a definite integral, or by expanding

( ( +B,i, c"_+ B,,_,+_B,')_c"-'_+ _B,,,_,+ \22_,,, ) .-' + .....

(31)

((o) <°))= " " " + l_-: l;,+-I(n-_)+ _I B_,'m '': = O. ,,

; In order to complete this treatment, we must explicitly give the form /268
q

:}_ of _, determine the integration lines _ satisfying the imposed conditions, and, ,,-;_
'T

_ finally, indicate how the _rou___of the equation (31) can be obtained, i_

' 45. (a) Thus we have the equation

'7

B,,f'+B,__,f=0, f=,7 (_-') ,, ,_

-! $

•Annales am l'Ecole Normale, S II, Vol III. +.......+

73 i_'
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and we set

: _,, =(t - "0 (l - a,_. •. (t- _,,,),

w

L"

limiting ourselves for brevity to the case in which the equation Bn(£) = 0 has

simple roots*. We obtain, al, a2,.. an being constants which can be determined:

ft B._ q a_ a_ a.--=- =----+_+...+ ---,
f -if- l--a_ l-uz t -a.

whence, c being an arbitrary constant:

: r_=c(t-"_ (l-a._ .i.(L-aO ,

_ so that the in£egral of the equation (31) is put in the form

_(m)=c ,.(_-a') (l-a,) ..._t-aJ dL

:_ a; {l-- _f-n+' (32)

(b) We sh=ll now deLermine the integration line _, which should satisfy

the conditions stated in Sec. 42. Thus, we denote with £i (i = i, 2, 3... n) a

line which, leaving any point £o of th_ plane of the com_!ex variable _, av-

_- proaches point ai, goes around this point,

iiill .remaining close to it, and then returns to the point of departure £o, with- /269

_]'l out including any of the other points al, a2,.., nor the point x and without

1 Passing through any of these points, then we denote _ith £x an analogous line• which, upon leaving £o, returns there after having included only the point x.

_]_ *The case in which the iquation B = 0 has multiple roots would require a° - somewhat-more involved procedurebut not different concepts. For the treatment

__ of this case, v. p. e. Jordan, Cours d'Analyse, _: from p. 241 on.

74
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These lines are understood traversed in the direction which we shall call posi-

tive i e., so that the point which they include remains to the left; we shallk • •

denote with -£i, -£x the same lines traversed in the opposite direction. Fin-

ally, zi + _j will indicate the line formed by £i and £j successively traversed;

it should be noted here that, although the addition sign is used, the commuta-

tive law cannot be regarded as applicable.

Having thus established this, we can assume as line % satlsfying the con-

ditions of Sec. 42 the line

"lh_=lh+lx-lh--lx"

Indeed, after having traversed _h, the function under the sign of (32) is mul-

2_ia b
tiplied by e ._ _; after having traversed _h + _x' the factor e-2_i° is acquir-

-2_i_ h
ed, after -£h, the factor e , finally after -£x the factor e2hi°, so that "

the function regains the primitive value. The same being the case for all its

derivatives, and the definite integral also having meaning and the integration

by parts and the derivation under the sign being clearly admissible, the _e-

quired eQnditions for line % are satisfied. We can also remove any doubt that

the integral (32), extended to line _hx, is identically zero, with the exception

of special cases; indeed, by denoting with Ih, Ix the integrals extended to £h'

£x when the integral departs frola to with a determinate value of the function _ o_

under the sign, we readily find that -,,_.

We can construct r, (b = i, 2,... r) of such lines and no linear relation exists

_mong the corresponding integrals b_cause otherwise a linear dependence would _

result between _ 7_ _

75 "

]966004770-083



I i , I2 , • " |r , lx

o

_ opposite the arbitrariness of the roots of gn(t)

: It is evident that the conditions imposed on line X can also be satisfied

_ with line

_ lhk= l:,+ Ik--:_--t_

£

_'_I• ; and thus f£hk would be a new integral of the equation, which should the.:efore

be linearly related to the preceding ones. Indeed :it is evident that /270

fl_ t_l_h,_ _ = (1 - e-2_;_ Ih - (I - c ) I_ ;
i

analogously f - _" f = (1-':='%) I_-(1-e `=;_*) I_,• "_-_- ,,==_t- e--'_;°1I_- (l 0 '% I. , _h_

from which it follows _entically

(t-e )1%=(I-c , ,k_ 0&Under the condition that the integrals have meaning, we can substitute in

the indicated integration !ines,_the line (which might also be straight) con-

necting ah with ak, or ah with x, or ah with _, or x with ®; lines which can

., have practical advantage, but theoretically they have no advantage over those

generally considered.

46. We must now indicate how it is possible to obtain the ro_ of the

equation (31). It will suffice therefore to _how the manner in which the Inte-

: grals extended to the lines _hx are transfo1_ea when the x value, considered

now as a variable,_ rotates 8round one of the singular points. However, since

the llne ghx is formed from _he slmple lines _h, gx, it will suffice to show

76 :
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!_ how these should be transformed so that x can rotate around ah without violat-

ing the exceptions established for the integration lines. It is clear that

this rotation

•?_ t_g. 2.
', fig. I.

.%

.!

fig. 3,

t

w_ll be possible if we substitute the _h' of Figure 2_ for the £h of Figure 1,

then the £x' of _igure 4 for £x" However these lines can be restored to the

primitive lines by noting that for Figure 3, /271
"I g

Ih'=l_+lt,-I x,

! '_

'and _ 2_
, - lhI = l_ -- lh-- l_. '_

and analogously __
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_. Iht = Ii/+ II,-- lhI

5
.:. then substituting:

. _xf = Ix + Ii, + Ix - 11,-/.=,

_Ii _ a relation which enables us to find immediately the substitution undergone bythe integrals /_'hx, fghx when x rotate._ around ah.

: 47. The following observations can be added on the integrals of equation

•L"-..(
(31): _ -

-- _C.CY

(a) Supposing that the _ine k does not pass through the point ah, let us

con3ider the values of x for which it is

i l<It-a !,

"- t being-any point of the integration line. For such values of x, t!,r. binomial"

(t-x)-_+n-I which appears under the zn in (32), can be expanded Jn c,:',,,er

series of x - ah, and substituting ±_ (32) and integrating term by ":_.a,an ex-

pansion is obtained for _(x) in powe_ _erles of x - ah, the coeff.,_,_".lts of

which, except for some numerical factocs, _re definite integer..- _' the same

form as (32) but with one less binomla± factor. Called the ,,,:: hypergeometrlc _

function of order r by Pod hammer,, it follows, by the same author, that:

"The coefficlen_s of the expansion in series of a nypergeometric function

; _of order r are hypergeometric functions of order r - i"

(b) As stated in Sec. 43, a linear relation with rational coefficients

exists among n + I _ntegrals (32) in which the values of o differ by integers.,,

; The same occurs if any other of the exponents of the binomials of (32), e,g., :

: ah, is considered instead of O. This c_n also oc verified by direct calcula-

'tion;"Indesd, by considering ah as a variable, _ _atlsfles, with respect to
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this, a linear differential equation of order _ analogous to (31), since ah

enters under the sign in the same way as x; now we have
: C

_'_th

whence

_ _"gh_= (_i)k_,k,_(_,__ 1_1;

by substituting in the differeptial equation under discussion, this is.trans- . -

f formed into a recurrent equation, with rational coefficients, among : - 7!,

.T (c) When applying that which has been said in the preceding Sections to ";'%

_ the case of n = 2, and setting aI 0 and a2 i, which does not constitute a _;_

rest:iction, & becomes ._ _:

_: (_- 1)_" + (_t,'+ b)?' = 0

:: from which :_ _..
J# .

!,_" _"__.-=_b a + b ?' _ c tb(t -- I)-la+_); c _

• _" "',

i_ equation (31) is thereby reduced to :},_

u

(t'-t)+'+(at+b-f.(2t-Uo)_'+(a=+=(=-])_=O, ' _.

which is integrated by -'
I

£

where the line X is a closed llne wi_ich encircles the points x and 0 and the

points x and i twice, and can be reduced, if the exponents have their re_l part

greater than -t, to the line which connects o with x, o with 1, 1 with x and

79 _
2
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also one of these points with =, if the sum of the exponents has the real part

smaller than one. It is sufficient t_ set /773

in order to restore the differential equation to the form of the hypergeometric

equation, which is integrated by

,x) = e [ t'-T (t - .lj_'_-' (t - z;-_ atj r_)

which, 5y setting t = l/n, is reduced to the definite integral cited in Sec. 5. :

- : 48. The equation (31) which we have studied presents the first generali-

" _ zation of the hypergeometric differential equation, known under the name of

"_" Pochhammer's generalization. #.-other generalization, credited to Goursat* is-_- offered by a regular equation of the nth order, having only the singular points

x = O, x = I, x = ®, of the form
}

.. _o._,z °'' " ' " (33)

_ - It is easy to calaulate the determinant equations relative to the three

_- singular points, and they are, respectively:

for x = O:

,(.-1...._-,_-r,j-_)._,._(_-I)...(_-_i+?)-b__;F(_-I)...(._-._:3)-...-b,_=0

for x = 1

_(.o_ ...(p- ,, t,�._--n+ !+a,+ b,l= 0,

, for x = =:

_(_-I)..(p-n+ll+a,_,_(_-l)...(_.n+2)+.:.+_,0+(,o= 0 ;

*Annales de l'Ecole Normale, loc. cir.

8O
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thus it follows that there is one integral without singularity in the neighbor-

hood of x = O, n - I integrals without singularity in the neighborhood of x = i,

none (except for special values of the coefficients) in the neighborhood of x =

_.

In determining the c _efficients of the expansion in series of the integrals

in the neighborhood of the points O, 1 and _ we readily find that:9 , J

"The ratio between a coefficient and the preceding one is a fractional /274

rational function of the index, the rank of the terms of the fraction being n,
2

as it is 2 for the Gauss series. Reciprocally, a power series in which the

ratio between one coefficient and the preceding one is a rational function of

the index satisfies one oi Goursat's differential equations*. '_

49. One of the mo_t remarkable observations m_de on the Goursat equation

C-

is that its integrals can be presented in the form of multiple definite inte-

-_ ..... grals**. In the present .section, we propose to obtain this result on the basis

of the same observation which we used for the preceding generalization; i.e.,

by showing how all the equations included in the notation So_ = O_** are inte-

grated imanediately by means of the expression (29) once the regular equation

A = 0 has been integrated.By applying the transformation S o to the equation (33), an equation in _

is obtained, the form of which is precisely the same as the primitive equation,
which contains however the quantity o ratio_ally _n its c_efficients. Then,

_S

*Goursat, ioc. cir.

**Pochh_er, Crelle, Vol. CII

_**cf. Rendiconti della R. Accad. dei Lincei, May 1892, i _:-

I
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d?
{l_..

we nave to integrate an equation of the form

,.:, .,.n-,,r,:.-,_ /./ _.,_.-,./,i ._.,_-n_r,'n-:,, --"[,, '-,.-t, ' _ = O. (34)

In this equation we set

• _ and by dividing the resulting equation by x_, an equation of the same form as

!:
(34) is obtained

5 01(n-O �a°'n_i_n-_+b"A_I_n-= ai"_ �<�'_-_ (__X_-,) ( ) _,(n-n_+...+( ) O,= O,

e whose coefficients however Contain _ rationally. Now by choosing _ so that bl"

_ equal to zero, dividing equation by x, we have an equationbecomes then the of

the primitive form (33) but whose order is reduced by one unit. By re- ,/275

=_: applying the same procedure to this equation, and so on, we finally arrive at

-_ an equation of the second order which is the usual hypergeometric eq_ation and

whose=integral can be put in=the form of a definite integral, so that the in-

tegral of (33) can be put in the form of a definite integral of (n-2)th rank.

-'_
CHAPTER vii

RECURRENT EQUATIONS WITH RATIONAL COEFFICIENTS AND THEIR

VARIOUS APPLICATIONS. SPHERICAL FUNCTIONS

50. in this chapter we propose to study the properties of the integrals

of recurrent equations of the second order, the coefficients of Which are

rational functions of the index. Thls type of study, which is presented as an

obvious application of the results of the preceding chapters, is of special in-

terest _ecause w_ can easily _educe from it the properties of the more well-

82
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known and more frequently used recurring systems such as spherical functions,

Jacob's polynomials, etc., especially with regpect to the conditions for the

expansion of a given analytic function, in ordinate series of the functions of

: r_ecz =y_uems. We are limiting our treatment to the case of recurrent equations

of the second order be.at'se the systems entering into ordinary applications are
r

: of this order, however, the extension to systems of higher orders presents no

; difficulties*.

A Let us consider the recurrent (or difference) equation of the second order

. a,., !,__ " " (35)"("'" +b(,of., n)f.,=°

where a(n), b(n) and c(n) are integers and rational polynomials of the same

i rank m with respect to the index n; by substituting the factorials** for the

i powers in chose polynomials, and designating h(h - I_ .. (h - k + i) with (h)k, = =
_ we shall write

i _z(n) = am(n + 2),_ + a__, (n + _)__, + . . . + a, (n + _), +. _o,= b(n)=bm(n+ l)_n+ bm_l(_ +'1),__, + • • . + b,(n _ 1)_ + bo,

c(,0=cm(,,),_+c__,00_-, +...+c,(,,),+Co,

where am, am_l,... _ao, bm.... bo, Cm,... c0 are constants with respect to /276

and assumed to be different than zero.
n, amCm are

Together with this equation, we shall consider followingthe linear dif-

ferentlal form

A_=(_7,.,!b_,l4 c_,F-)l":__'_+ (_,_.,_,_b.,. ,1-:c_,_d_") l"- '_.''- ') +... +(au+ bo14"CoI_)_, "_

_ *See my memorandum: On th___£eGe____erationof Recurrent Systems, et____cc.Acta
i'_ Ma_hematica, Wol. XVI, 1892.

•*See p. e. Capelli, Algebraic Analyses, et___c.,this Journal, Vol. XXXI y :!_
(sec. w_, 3). _:_

83 _ "'-
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and the non-homoge..eous equation

_? = l_(h + I_0 (36)

where _ _s a positive integer, indeterminate for the present, and h and k are

two constants.

The equation A_ = 0 is a regular homogeneous equation, whose singular

points are _ = O, _ = _, and the roots =, _ of the equation of the second rank

%, ! b., t + r,,, P-= 0 ; (37)

in regard to equation (36), its general integral is obtained by adding the gen-

eral integral of A_ = O to one of its own Farticular integrals.

No_, equation (36) has a s_ecial integral, and generally only one, which

2_ : can be expanded in the neighborhood of the point t__= 0 in positive whole number
h

power series of _t. Writing this integral in the form

o(I) = !%" p,t + l,_t"+ •• •+p,,t _ + • ••, (38),_

c

}'_ we immediately find that the coefficients PO' PI"'" PU-I are zero, -_h_le for :
7_

the others, the following equaticn_ hold:

'_ I a(B--l)_'+'+b(_'-l)P'=A' (39)

• a(n)p.+.+bOOp.+,+c(n)p,z=O, (n=I.t+l ,_,+2,...)."

The system of coefficients Pn of (38) is thus an integral of the given recurrent

, equation (35), uniquely determined from the conditions (39), namely, by the co-

efficients h and k.
o
'l

_" 51. It is not difficult to recognize the radius of the circle of conver-
i

genre of the series (38) by means of Poincarg's theorem glven in Sec. 16. In -

:_ fact, this radius is the inverse of the absolute value of the limit (if it ex-
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( ists) of the ratio Pn+l:Pn when n = _; now, since we have /277_ -
k

_ lira bOO b,,, ¢(n_ e-- = _ ]i;rl _--__'2
f .=_. a!.) a,,, ,,--_ a(n) .,_'

the limit of Pn+l:Pn will exist and will be, for the cited theorem, one of the

roots of the equation (the reciprocal of (37))

,_ a_X _+b_x-' cm=O,
5

and in general it will be that root whose modulus is the greatest. Then suppos-

ing ]el < 15], we have

generally lira P" �I..... , exceptionally lim P,,*____i= i
n :_ Pn (7. = p,_

f
This is in relation with the observation that the singular points of the _-E

integral _f (36) are t = a, t = B, and one of these points (generally a) should

lie on the circumf6rence which limits the circle of convergence of (38).

- 52. _e shall no_ , _,'<i2 how it follows f_em _he principles of Chapters II

=

and III that

i (a) "If two integrals Pn avd P'n of the recurrent equation (36) are such
!

that the limit of the ratio P'n; Pn is zero when n --_, P'n will be the distinct

integral of the s._me equation, and the continuous fraction which this equation

defines will be convergent."

: (b) "If two integrals of equation (35) are found so that for one, Pn, we

have lirap,,___,=1_and for the other P'n, liraP'"+_=-L the limit of p'z_:pn will -:

be zero and p' will be the distinct integral " : '_n "

: Having established this, and by assuming that we have already found the :

distir.ct integral P'n ,;aentloned in (b) the determination of the o value of the -:

: continuous fraction defined by (35) can be conveniently performed with the method _,:

in Sec. 15. Having set for br_vlty _; _

i :
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bOO c(,,)
urn) rn . a(n) = s_'

equation (36) is written

f,,+:= r,_&., +s,,t',,;

this is satisfied by the numerators An and by the denominators Bn of the reduc-

tions of the continuous fraction /278

L'

. s_ or c(:_

;__ ' - b _) _'a(:.t) r(,.t + l) (40)
_: rlx+t + sv'4-tr_.. +. b(_- !)- a(._+l) c(:,.4-__)- •

#
": for which have been set
3:

_._ AI_=I AI_+,-=0 , Btt=O , Btt+_=l.
_~

?" Then w'e have

prn= p'_A_+ P'_+IBn ,

_ where, having assumed p'_ to be differe_ t than zero ttf it did equal zero, it

would suffice to change .u into B + 1, etc.), divided by Bn, and taken th, _- limit

for n = _, we have

,_=lim An P'_+l..
n=_ B,,= -- P'ls

53. The only remaining requirement is that we find the distinct integral

p' of (35) or, which is the same thing the system of coefficients of the

"' t_ which satisfies (36) and converges in a circle of cen-series expansion n_v,,

ter _ = 0 and of radius 18(; the ratio of the second cf these coefficients to
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the first, taken with the sign changed, will give the value of the continuous

fraction defined by (35). This expansion is obtained by the method which

follows:

We describe in plane ! an indefinite line % which, having left infinity,

returns there in the same direction after having made a turn around point _,

without having this line pass through the

point O nor the point _ and without having this line contain either of these

points in ie_ interior (the region in which 5 lies). There is only one inte-

gral of the equation A# = 0 which, by one turn of the variable_around the point

_, i_ reproduced multiplied by a constant: we denote this integral by U(t__) /279

and we observe that it becomes infinite of necessarily finite order when t =

by performing the analytic continuation along the Line ?: let _ be the real

part of this order of infinity. Finally, we determine the integer _, hitherto

indeterminate, so that it is:

_--_+2<0.

With these positions, the definite integral

U(0d.t

will have a meaning for each value of _ external to the line %; however, a cal-

culation analogous to that performed in Sec. 42* readily demonstrates that _l(Z) _'

satisfies an equation _

*For carrying on the calculation, see my cited memorandum in Acta Mathema- _'
tica, Vol. XVI, Sections 5-9. -_!
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A_, ---z_(h + hz) •

of the same form as (36), where

f tl(t) at f IJ(Odth=-c(_.-2) t?.) l___ b(_-2) _x_-t _

f U (t) dt

: where both of the definite integrals have meaning because of the hypothesis

-" done on _.
f_

_ Now the integral _l(Z) can be expanded in power series of z,

_). _'_)= _C"z_ ' On= h> t_+n+----i- (41)

¢
_ convergent for a-i values of < i 1; however, inasmuch as the line % can be

_._ taken to be as close to 8 as desired, the circle of convergence of (41) has 0

for its center and [81 for its radius. The system Cn is then the distinct in-

_) tegral of (35), which we wished to find.

It should be noted that the definite integrals which figure in the ex- /280

pressions of _and k can be represented with C__2 and C__I; upon substituting

the values of h and k in the expressions (39), these assume the form of equa-

tion (35) for the values n = _ - 2, n = _ - i.

Summarizing:

"Given the recurrent equation (35), the coefficients of which are integers

znd rational polynomials of the same rank _, the system Cn given by the formula

(41) is the distinct integral of _t. Then forming the continuous fraction (40),

the numerators and denominators of which satisfy (35), it is convergent and its
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_, values are given by the ratio -C_+I:C_*o"
#

_ It should be observed that in the preceding definite integrals, a line

_ which goes from 6 to infinity can be substituted for the integration line _,

_" when the function under the sign for _ = B is infinite of such an order that

its real is less _han i. Then, the integrals f6, which do not differ ex-
part

cept by a constant factor, can be substituted for the integrals /k"

54. The preceding result, na::ely, the method of expressing the value of

each continuous fraction of the form (40) as a ratio of two definite integrals_*

includes as a special case the well-known Gauss formula*** whi_N gives the ex-

pansion in the continuous fraction of the ratio of two hypergeometric functions.

In order to obtain this formula, it suffices to reduce the form A# te the first

order, assuming all the ah, bh and ch values from the index (subscript) h = m

to h - 2 inclusively to be zero; in this case the continuous fraction (40)

takes the form
i

c_ + co

(a,(F+2)+ao)(c,(_+l)+cc_
b,(_+ l)+b0 -

bl(F + _)+ bo- (a,(_+2)+ao)(c,(:_+2)+Co)• b,_,3) + bo- ...

the differential equation A_ = 0 becomes

(a_ + b,t + c,__) t?' + (_7o+ bo_+ cot_'),7 = 0. i (i!

*It remains to consider the convergence of the continuous fraction and :;_3

the search for its value in the case in which am --O, and in that in which _!_

lal = 181: we leave this easy determination to the reader. _!

**See Rendiconti della R. Accademia dei Lincei, June 21, 1891. :_

***Werke, Vc]. III, p. 134. Cf. Heine, Handbook of Spherical Functions, _:i

Vol. I, pp. 269 and 280. _:_:_':_
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/,

2

_r the integral of which is of the form t$(t-_)n(t-B) _ and the value of the /281

_ continuous fraction is

&)
!
/-

L which can be easily expressed (Sec. 47, c) by means of the quotients of two hy-

pergeometric series.

- i 55. In the preceding Sections the coefficients a(n), b(n), c(:.) of the

equation (35) were assumed to be dependent only on the index n. We suFpos= nowthat b(n) contains linearly a parameter x and is

(u),,q + m (u) ,q= (u) q

I with - b'(_0=b'm(_t+l)m+b'm (Tt+l)m_,4 .., Tb',,, },

_ b"(.)= bj'(n+ 1),_+ b__,"(_+ l)__,+. ••+ b.";

so that the equation which we shall consider will be

a(_)_+2+(b,(_)m + b,,0_))_+,_+c(_0g,=0. (42)

The integrals of equation (42) will be functions of x, we shall be able to give

_ particular consideration to the integral Bn(X) defined by the initial conditions

B_(x) ffiO, B_+l(X) = i, and which will be composed by a system of whole number

rational polynomials in _ of rank ordlnately increasing by one unit; precisely,

Bn(X) is of the rank n - _ - ].

AS in Sec. 50. the linear differential form A_ can be made to correspond

o_ to the equation (35), and the singular points of _ - 0 are the roo_s of the

equation

9O
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=,=

,_ let a(x) and B(x) be the roots of this equaticn, and be la(x) l < l_(x) l. Each_j e

integral _n of the recurrent equation (42), with the exception of the distinct

integral, in such that

*- o
? :

:g in particular, this will usually occur for the integral _n(X); (in the event ;' :": ",2!?_':i':

! that Bn(x) coincides witl: the disginct integral, another integral, e,,g., the : ..... _ ....._

An integral defined by Ag = i, Ag+l = O, would be subst±_tuted for Bn(x)) ...... _r*_<T_'

i Equation (42) belongs to the type of equation (5') studied in Sec. 21; /'282._ ;%.]:e

together with this equation, we shall consider its _nverse equation, as in that

Section "

a<n- _)f. + (_,'(,):+ b,'(,_))f,,+,+ c(,_+ _)/,,+_=o. : . ._:
(43)

, This also is of the form of (35): therefore, a linear differential form :

Al_5 will also correspond to it, and the equation Alq: = 0 will have for singular

points, in addition to 0 and _, the roots of the equaticn

Cm + (b,_'z + b_") X + am X_"= 0, _
L:

which are I/_(z) and i/B(z). The theory, established in Sec. 52 and in subse-

quent ones, indicates how the distinct integral of equation (43) is dete_ined; _ ._

indicating this integral with Sn(Z), we will have _ ...._- _ ;:

_.

lira S.(,-_ '

and for th_ value n = U - i, equation (43) rel/tive to Sn gives .. (

2
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where the determination of k proceeds in accordance ,:i=h Sec. 53.

Let us now take up the development (7) given in Sec. 21, in which we change

: n into n + u:

t ((" b,(n_l)B.(x:..u,..,,

i ,
, let us also take x so that ]a(x)I > p + _, and z s that In(z)i _ 0 - e. -_being

an arbitrary positive q,,antityand _ < p an arbitrarily small positive quantity;

the expansion will be convergent absolutely and in equal rank, and then upon

%- repeating on it the formal calculation performed in See. 21, it will follow

_ that the sum of this expansion will be I/(z - x), and thus we have
g

_ t t _ b' (n-- 1) Bn (x) S. ¢z)_--_=_ • (7')

under the condition >

_ 56. We denote with rp the locus cf points of the plane x for which we have

_. ]a(x)[ = p. This locus will generally be a curve which will separate the /283

region E'p of the plane in which la(x) l < p from that EO in which in(x)!.> p;
i

il it is clear that no passage can be made from one to the other without travers-

ing Fp. The curves rp limit the areas of convergence of the series of functions

Bn(x) or Sn(x). Two curves, rp rpl,cannot be cut off and if Pl < O, rpl will

be entirely in E'O.

57. Now let _(x) be an analytic and single valued function of x, given in

the internal region of E_; we shall have by the well-known Cauchy theorem:• J

92
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1 [ _--ft:),I.:,
_. . f(a:) = 2=i r_; x

- z being taken outside of the region E_, i.e., in the region E-', and v being

taken so that it is entirely in E.: , i.e., having .51 < p. The series of (7')
=

;: oeing convergent uniforraly for the -"vaiues of 7_i and for x within E_, its ex-

_ pansion can be substituted for i/z-x and thus we have the expansion of the func-

.* tion given _(x) in series of the functions Bn(X), and convergent in the entire
i

_,:- go :"7

b'(,_ -- I) ]'(ro s.(:; [(:) 'J:-: px; = ":(',, [:,.(x), co:: C,, - =f_i -- ._

¢ r

? Analogously we can have the expansion of an analytic function given in the re-

_ gion Ep', in series of the functions Sn(z).

%

i 58. The preceding considerations can be readily applied to the study of

2

; special recurrent systems with interesting results. We shall lit:it ourselves
?-

to giving an example of these applications, demonstrating how our method treats

easily the study of spherical functions cr Legendre polynomials and of expan-

?.
.? sion of analytic functions in series of such polyncmials. The special case of

';' spherical functions is presented when we put in equation (42)

a(n)=n+2 b'(n)=-(°n_-3) , b"(n)=O, c(n)=n+l;

upon writing the special equation which is obtained with these positions, we

": have

" (n + 2) f,,,._- (2n .+3) x f.+, + (n + I)/,, :- 0.
(44)

This equation does not differ from its inverse, except by the change of /284 _. "'_:_

93 _ ''_
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x into z; therefore, in (7') the system Sn will be the distinct integral of

(44) itself.

We shall consider the integral Bn(X) of (44), defined by BO = O, B1 = i;

upon changing _ into n - i in (44), and setting Pn(X) = Bn+l(X) , the recurrent

equation becomes

("+ Or,+,-(_'_+l)x_+,,&_,=O, (44')

and its integral Pn(X) is constituted by the s?;:tem

?
:a-

._ of polynomials of rank equal to their index. These polynomials are known under

._ the r.ame of Legendre polynomials or: spherical functions of the first order.

_._ They are the denominators of the reduced of the continuous fraction
/ -

I = or !

z | l.l

3-3

7._--.
a r,
_ --_-.
"-.'2

defined by the recurrent equation (44').

• _ It follows from the general theory (Sec. 50) that if _n is an integral of

!51 (44'), the expansion E_n tn is an integral of the linear differential equation °

(1- 2tx+ t_);_'- (xl-- t:)?= _ __!; (45)

taking for _i the system Pn(x), it is readily evident that h = k = O; therefore,

the series n oPn(x)tn satisfies the equatior

•(1 - 9._t + :D_'- (x - O_ = O"

.,_ 94
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Z;

U
_$! which, integrated, gives

}_ ,
7 _ C(I - 2 xl + l_)-_ ,

_L

_ however, C = 1 because PO = 1, and therefore /285

_" P,,(x) t"=(1 2xt+ t_) =.
n_u

._. Thus, the property that usually defines the polynomials Pn is found again;

t2)-i/2they are, namely, the coefficients of the expansion of (I - 2xi + in

_ power series of t

._. On the basis of this defiaition, it is not difficult to obtain the expan-

:_ sion of Pn(X), from_which it is evident that,,with the exception of a numerical

factor, Pn(x) is a hypergeometric series (reduced to a polynomial); and pre-

cisely, P2n coincides with F(-n, n + 1/2, 1/2, x2) and P2n+l with xF(-n, n +

3/2, 3/2, x2), with the exception of a numerical multiplication factor*.

59. The singular points of equation (45), in addition to _ = O and _ = _,

are the roots of the equation of second rank in !.

! --2/m+l 2=0. (46)

With the exception of the real values of x included between -i and +i, for

which the two roots of (46) both have the modulus equal tc unity, one of the

roots of this equation has a modulu_ greater than unity, while the other is the "_;_
reciprocal of the first and, therefore, has its modulus less than unity. We _

shall denote the _irst with _ = r(x), the other will be e = I/4(x). The locus

of points of the plane x for which Ir(x)i has a constant value in an ellipse j!_

having the points +i and -i as foci; as [r(x)[ increases from i to _, the elli- _

*For the other elementary properties of the functions Pn, see the first J_

Chapter of the frequently cited Handbook by Heine. i_.

95 ,_
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pse increases in size from the segment -i.. +i to an ellipse of infinite axes.

These same ellipses are also the loci in which the medulus of that root e with

: modulus less than unity remains constant; precisely, the curve £p (Sec. 56) on

which we still have

1
I=l=_, @<i): whence ir(_)i=_ '

:_ is the ellipse represented by the equation, having set x = u + iv:

-_7_:._ _2 O"

e

N and the region EO is the internal part and the region E'p the external part of

_7 the ellipse £p.

_ 60. We now turn our attention to determining _he distinct integral of /286

=_ equation (44). This is obtained by applying the general method given in the

present Chapter. If necessary, we again take up the definite integral

_: considered in See. 53; here we shall have _ = O, U(t) = (t2 - 2tx + i)-I/2, and

;_ line _ surrounds the root of equation (46) which has the larger nodulus namely

_ r(x). Inasmuch as U(t) is infinite of order < i for t = r(x), we can substitute

_i I=]

: for the preceding integral and, expanding this integral in power series of _,

•) the coefficients of the successive powers of _ will give the distinct integral

of (46).

We shall set

_ 96
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• _ dt
• J= Q,,_':, with kb,,,:_= -...., , in-| s -_

.=o "rSr _ _ -212: - [

; It is worthwhile to observe that, having fixed _, the expansion of J converges

for all x values so that IrCx)l > I_J, i.e., outside of one of the ellipses r_

if l_l -- _ > z, a_d in the entire plane except the segm_n_-l.. 1, _f i_i < 1.

Qn(x) have been given the name of s_herical functions of the second order.

> We know that for the distinct integral the recurrent equation, in our

case (44), is not valid for the initial values n = O, n = i, i.e., equation

(44') is not valid for n = -i, n = O. Then we calculate Qo(x) and Ql(X) di-

rectly. We have

= dlQo(_) ----

.i
_ ..... Setting

i dt'-rE2t _ _..'.=u - t,

I we obtain, noting that r(x) = x + _fxZ- i,

I _+1|: _ Qo(x)= _1o_ - l ;
t

f
_:. with the same position

l: d;--_ 2t 1
r(x) X +

becomes

® (tt- x) d,t

"i and dividing _4::_

97 :_."
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K

• / _U into / _L_d_ I d|_(_'- I)" CYST)' u'- 1

and integrating the first by parts and limiting, we obtain

Q,(m) = m Qo(_)- l. (48)

This relation will be the one to be used instead of (44') for x = O.

Now we can apply the expansion (7') of Sec. 55 to the spherical functions

and we have, since k = -i, b'(n) = -(2n + 3),
!

_ I _ (2_ + I)P_(_)Q_ (=), (')_ - (49)
-_ % -- ?" n_O

:_ convergent in equal rank for the x values represented by the internal points

•_ and the z values by the external points of an ellipse of foci +i. This formula
J7

,_ permits of expanding in series of Pn(x), a given, analytic and single-valued

_- function within an ellipse of this homofocal system, or in series of Qn(Z), a

_? given, analytic and single-valued function regularly outside of-one of the above

mentioned ellipses.

_. 61. The value c of the definite continuous fraction from (44')

._. _
_ 7_ --...

can be easily found. The numerators of its reductions, which we shall in- /288

'_ dicate wi_h Nn, form a system of whole number rational polynomials which satisfy

•A formula often credited to Neumann, but which originates with Heine

._ (Crelle, Vol. 42, _. 72). Cf. C. Neumann, On tha Development o_fa Function wit.___h

____Imaglnary Argument, etc., (Halle, Schmidt, _862) and Thom_, Crelle, Vol. 66.
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(44') and, together with the denominators Pn, give a fundamental system of (44')

_=: itself. The integral Nn of (44') is defined by the initial conditions N I = i+; ,

;2:_ NO = O. By denoting two constants with respect to th index n with c ana c'

_- we can set

.: Q. = c .N. -- c' P,, ,

_= and making n = O, we have QO = c'; then making n = i, (NI = i, PI = x), we have :

++++ Ol = c + Qom

_ and comparing with (48), we have c = -1. Whence it follo;:s, since

f"
t I+x

-_ Qo= _ log 1 x

_: the relation between the spherical functions of the first and second species :

_ I I +:+ .
_ Q. = _.P,: log _ _ m _"' (5o)

and since
j++

_: lira N,, lira q_

-; we have

[, d_ (51) _ ,,= . + _?p
log_---m x 2_ .-+

a formula by Gauss and valid for every value of x except the real values bat- )_ "fi

wean -i and +l. _; '_

The formula (50) determines completely the nature of the spherical functions +_!_:+_

, of the second order. Since log 1 + x/l - x is a singular, (logarithmically) .+'"multiform and analytic function only at the points x ; +_ 1, and that Pn and Nn .+.

• 99 :_
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are who_e number rational functions, it follows that Qn has the same singulari-

ties and, therefore, it is a multiform analytic function; however its branches

can be separated by dividing the plane of the variable along the real axis bet-

ween the points +I and -i. Moreover, (Sec. 17) the function Qn is zero to /289

infinity of the order n + i.
l

It is quiku remarkable that while the expansion in power se_'ies of i/x of

,_ the function 1/2 log i + x/l - x is valid only outside of the circle of center

_ x = 0 and of radius i, the expansion (51) in a continuous fraction and the ex-

_ pression in the form of a definite integral are valid for the entire plane,

•i_- with the exception of the segment -i ... +i of the real axis.

62. The relation (50) can also be written

¢-, 1 f' dl
#:5_ Q,, (:r) = _ P.(x)]_, L-i--xx - Na(x)

,'_ or

- 2 , _-x

_it should now be noted that the first integral is a whole number rational func-

i tion of x, because Pn(t) - Pn(x) is divisible by t - x, while the second can be

expanded in power series of l/x, zero for x ffi_; we deduce from this that we

_hould have separately

lf' P.(t) dL

(52)

and

1f' P.(O- P,,(_)dr.

However Qn(X) is zero of the order n + i for x = _, the same should then

i00 -

c _
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hold for the second member and therefore we shall have

f'_ P,,(Ol_d/=O per k=O,i 2, ..u t. (53)! t .

It results from this that

" p,._,t)R (t_d_-t

.2

; is zero for every whole number rational polynomial R(t) of an order less than

r n, and, in particular /290

--,o:_ ] p,, (t) [', (0 d, = o: , (54)

>

provided that m < n. We can readily deduce from this last property that the ex-

pansion of an analytic function in series of Pn(x) can be performed in only one

manner*.

63. Pn(X), being, as stated, hypergecmetric functions in which two para-

meters vary by integers an n_ varies, satisfy the linear differential equations

having thd same group. These equations could be obtained from the hypergeo-

< metric one but they can also be obtained by the following method. Having set:

R= _Li_21m+ I

we readily have

deriving with respect to x, and noting that _R/_x = t/K, we ha_e _:_

i ' ' %
(i _ =)..T_., __= _ + t-_- = D;

*The properties given in this Soction are the in=aediate consequences of -"_

the elementary _heory of continuous algebraic fractions. See the indlca_ions ,_,_I_

given at the beginning of Sec. 21 for more information. ;i_:i_

zoz g
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substituting for I/R the expansion EPn(x)tn and equating the coefficient of tn is

to zero, we have the linear differential equation of the Pn(X):

d'P,__ flP,+n(_+1)pn =0. (55) _

_" Formula (52) immediately demonstrates (Sec. 42) that Qn(X) is a second in-

tegral of this equation and that together with Pn, it gives the fundamental

_ system of it.

_!_ 64. The methods of the present Chapter, which we have applied to the /291
%

% simple case of spherical functions, can be used with equal facility in the study

of other more general polynomial systems. We cite, e.g., those which arise _

from the hy_ergeometric series in which the system of values -i, -2, -3,..., is ._

i

,_, substituted for one of the parameters _ and 6; this case includes the polynom-

ial system first considered by Jacobi* and then studied by Darboux**. The

} properties of these polynomials, especially the possibility of expanding a given _"

-_::' analytic function in series of them and the relative convergence conditions _"

could be found quite readily by the methods indicated above, methods which i_

adapt themselves to the study of recurrent systems of order greater than the

second, as we flnd, for instance, In the reduction formulas of the hy_e_rellip-

' tic integrals•t

August, 1894 _

Translated for the National Aeronautics and Space Administration by the

FRANK C. FAtlIgI-t_ COMPANY

*Crclle, Vol. 56, p. 149.
L

**Journal de Mathematiques, S. III, Vol. IV, 1878.
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